Brigham Young University

BYU ScholarsArchive

Theses and Dissertations

2020-08-13

Modular 3D Printer System Software For Research Environments

Clayton D. Ramstedt
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

b Part of the Engineering Commons

BYU ScholarsArchive Citation

Ramstedt, Clayton D., "Modular 3D Printer System Software For Research Environments" (2020). Theses
and Dissertations. 8688.

https://scholarsarchive.byu.edu/etd/8688

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dlssertatlons by an authorized administrator of BYU ScholarsArchive. For more information, please
c@ ellen_amatangelo@byu.edu.

www.manharaa.com

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F8688&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=scholarsarchive.byu.edu%2Fetd%2F8688&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/8688?utm_source=scholarsarchive.byu.edu%2Fetd%2F8688&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Modular 3D Printer System Software For Research Environments

Clayton D Ramstedt

A thesis submitted to the faculty of
Brigham Young University
in partial fulfillment of the requirements for the degree of

Master of Science

Greg Nordin, Chair
Adam T. Woolley
Philip B. Lundrigan

Department of Electrical and Computer Engineering

Brigham Young University

Copyright © 2020 Clayton D Ramstedt
All Rights Reserved

www.manharaa.com

ABSTRACT
Modular 3D Printer System Software For Research Environments

Clayton D Ramstedt
Department of Electrical and Computer Engineering, BYU
Master of Science

The Nordin group at Brigham Young University has been focused on developing 3D
printing technology for fabrication of lab-on-a-chip (microfluidic) devices since 2013. As
we showed in 2015, commercial 3D printers and resins have not been developed to meet
the highly specialized needs of microfluidic device fabrication. We have therefore created
custom 3D printers and resins specifically designed to meet these needs. As part of this
development process, ad hoc 3D printer control software has been developed. However, the
software is difficult to modify and maintain to support the numerous experimental iterations
of hardware used in our custom 3D printers. This highlights the need for modular yet reliable
system software that is easy to use, learn, and work with to adapt to the unique challenges
of a student workforce. This thesis details the design and implementation of new 3D printer
system software that meets these needs. In particular, a software engineering principle-
based design approach is taken that lends itself to several specific development patterns that
permit easy incorporation of new hardware into a 3D printer to enable rapid evaluation of
and development with such new hardware.

Keywords:SLA. 3D printing, microfluidics, lab on a chip, system software architecture

www.manaraa.com

ACKNOWLEDGMENTS

Thank you to my advisor Dr. Greg Nordin and my parents Greg and Susan Ramstedt,

whose constant stream of support, encouragement and good ideas made this thesis possible.

www.manharaa.com

CONTENTS

List of Tables xi
List of Figures xiii
Chapter 1 Introduction 1
Chapter 2 Background 5
2.1 How SLA 3D Printing Works, 5
2.1.1 Resinandlight 5

2.1.2 Focus Calibration 6

2.1.3 Electronics 7

2.2 Previous Attempts at System Software 7
2.2.1 Desktop Application L 7

2.2.2 Web Application 9

2.2.3 Summary of Lessons Learned 12

Chapter 3 Simplified Architecture Description 19
3.1 Tools 19
3.1.1 Coding Languages 19

3.1.2 Operating Systems 20

3.1.3 Web Server 21

3.1.4 Configuration and Print Settings Files 21

3.1.5 Frontend Framework 22

3.1.6 Unit Testing 23

3.2 Simplified Architecture Description 23
321 Web Server 24

3.2.2 Frontend 25

3.2.3 System Software Core 25

324 Backend 27

3.2.5 Putting it all togethero 28

Chapter 4 Detailed Architecture Description 31
4.1 Starting and stopping the backendo oo 31
4.2 Structure of the message router process 32
4.2.1 Handling web server messages 34

4.2.2 Forwarding messageso 36

4.3 Print job processo 38
4.4 Hardware processeso 40
4.5 Filesystem usageo 41
4.6 SUMMATY vt 42

v

www.manharaa.com

Chapter 5 The Structure of the Code Base 47

5.1 main.py 48
5.2 Messages 52
5.3 Process Interfaces 58
5.3.1 Light Engines 58

5.3.2 AXEs 70

5.3.3 Print job controller and print job file validator 74

5.4 Webserver 81
5.5 Configuration Management System 84
5.6 Tests 90
5.6.1 Driver tests 90

5.6.2 Processes 91

5.6.3 APL 94

5.7 Final thoughts 94
Chapter 6 Development Patterns L. 97
6.1 Adding hardware 97
6.1.1 Pattern 1: creating a driver for an existing interface 98

6.1.2 Pattern 2: creating a new hardware interface 99

6.1.3 Pattern 3: adding new controller interfaces 102

6.2 Summary 103
Chapter 7 Conclusions and Future Work 105
7.1 Conclusions 105
7.2 Future Research 106
7.2.1 Integration into production research 3D printer 106

7.2.2 Replace Flask’s development web server with a dedicated web server 106

7.2.3 API handler refactor oo 107

724 Logging e 108

7.2.5 Filebrowser 108

7.2.6 Impact assessment and prospects 108
References L 111
Appendix A Appendix 113
Al mainpy 114
A2 ABC _MeSSage.py « -« v v v v e 119
A.3 light engine message.pyo 121
A4 system messages.Pyo e e e e 134
A.5 LightEngineslnterface.py oL 139
A.6 ABC_LightEngineDriver.py 148
A.7 LightEngineDummyDriver.py, 155
A.8 AxisDummyDriver.py 165
A9 AxesInterface.py 172

v

www.manaraa.com

A.10 PrintJobController.py 180

AT Serverpy . . . o o o o 206
A.12 LightEngineBrightness.py L. 216
A.13 ConfigManager.py o oo 219
A.14 config _schema.json 226
A.15 AxesInterfaceConfig.py 231
A.16 ABC__AxesDriverConfig.py 234
A7 AxisDummyDriverConfig.py o 238
A.18 axes driver_schema.json 239
A.19 axes dummy driver.jsono 241
A20 grbl_test.py 242
A.21 test_ MessageRouter.py 244
A.22 Publisher.py 247

vi

www.manharaa.com

LIST OF TABLES

6.1 Table used to find all of the edge cases in the GUI components for the print job
controller web UL 103

ol LEl ZI]I_EISI K

www.manharaa.com

2.1

2.2

2.3

24

2.5
2.6

3.1
3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7
5.1

5.2

LIST OF FIGURES

10 pm layers stacked on top of each other as viewed under a scanning electron
microscope. The dimples along the layers indicate individual pixels from the
cross sectional image. L.
3D printed microfluidic pump. The grid pattern is a by product of the individual
pixels in the layer images.o
[ustration of a cross-sectional layer of a 3D print being projected as an image
onto the build platform of the Asiga Pico Plus 3D printer. Grey pixels are turned
off and yellow pixels are turn on. Our recent custom 3D printers operate on the
same principle but do not have the pixels rotated 45°. Image used with permission
from [9]. . . .
Layer-by-layer fabrication process for a simplified device. The device is rotated
180°in (D) relative to (A-C). Image used with permission from [9]..
CAD model of a SLA 3D Printer
Model-View-Controller Architecture.

3D Printer System Software Simplified Architecture
Backend architecture for a 3D printero

Threads used in the message router process to service a light engine api request.
Threads that are directly adjacent to each other have a parent-child relationship
to each other, with the thread with the largest circle being the parent. Numbered

connections relate to the explanation in section 4.2.1 and correlate to Figure 4.2.

State of the job queue for servicing an API call in Figure 4.1. See sections 4.2.1
and 4.2.2 for further explanation.
Threads used in the message router process to forward messages from one process
to another. Threads that are directly adjacent to each other have a parent-child
relationship to each other, with the thread with the largest circle being the parent.
Numbered connections relate to the explanation in section 4.2.2.
Thread architecture for the print job controller process. Refer to the text for
further explanation. Numbered connections relate to the explanation in section
4.3, . e
Thread architecture for the light engines process. Numbered connections relate
to the explanation in section 4.4.
Thread architecture for the axes process with the stage controller driver and the
axes interface separated from each other.
Model of how the output image on a light engine is set from the web server.

State machine for the print job controller process. External messages that can
change the state and that can be received at any time are Start, Stop, Next, and
Pause.
Simple relationship diagram of the print job process’s configuration handler, its
JSON schema and a configuration file.

viil

www.manaraa.com

37

38

5.3 Relationship diagram of the configuration management system for the axes pro-
cess. The arrows indicate what file the originating file or object registers itself
with. Not shown in the diagram is the python inheritance structure but for refer-
ence, ABC AxesDriverConfig is the parent of AxisDummyDriverConfig and all
other axis drivers, and ABC_AxisShimConfig is the parent of AxisDummyShim-
Config and all other axis shims. 88

X

www.manharaa.com

CHAPTER 1. INTRODUCTION

Modern scientific research relies heavily on specialized tools. Some of these tools
are simple, elegant and powerful, like a whiteboard filled with mathematical derivations and
diagrams. Other tools are large and complex, so complex, in fact, that the time spent getting
the tools to work far outweighs the amount of time doing actual science.

The field of microfluidics is a prime example of this phenomenon. Microfluidics,
the science of manipulating and controlling fluids on the scale of a microliter or less, is a
tool frequently used by chemists, biochemists, biologists, and microbiologists to exert fine
control over liquid handling for a variety of research and biomedical applications [1] [2] [3].
Often devices are constructed to facilitate a specific experiment. These devices, known as
microfluidic devices or lab on a chip (LoC), are typically a block of material that has an
interconnected network of tiny voids, like hallways inside of a building, running throughout
it, acting as conduits for fluids. Again, similar to hallways, there can also be doors (valves)
that can be used to control the flow of the fluid, or even to construct more complicated
features like pumps or mixers [4].

As a tool for scientific experimentation, microfluidic devices are superb. However
fabricating a LoC can be challenging. Since first proposed in 1998 [5], Polydimethylsiloxane
(PDMS), a silicone-based elastomer, has been a popular choice for LoC prototyping using
a method known as soft lithography [6]. In soft lithography photolithographic cleanroom
processes are typically used to create a mold using photoresist on a silicon wafer. PDMS is
then either poured or spin-coated onto the mold, and, following thermal curing, the PDMS
layer is separated from the mold and aligned and bonded with similarly molded PDMS
layers to create a LoC device. Prior to alignment and bonding, holes are typically punched

in various layers to enable layer-to-layer fluidic connections and off-chip connections.

www.manaraa.com

While effective and capable of high resolution features, cleanroom processes for mak-
ing molds are expensive and time consuming. Cleanroom startup costs involve millions of
dollars, followed by significant continuing costs for operation and maintenance. [4] And while
designing a new LoC mold isn’t hard, being able to fabricate it correctly and repeatedly is.
Every new design has a learning curve that the designers must go through before the fabri-
cated LoC mold can be considered reliable. It can take weeks or months before the learning
curve has been overcome for a single design. Taken together, these disadvantages severely
limit the usefulness of photolithography as a manufacturing process for PDMS based LoC,
especially in a research setting where rapid prototyping is ideal. For this reason cheaper
fabrication techniques that ultimately produce larger devices are popular.

In recent years an alternate manufacturing technique has been proposed for the pro-
duction of LoC: 3D printing [7]. While initially 3D printers did not have the resolution to
produce microfluidic channels that many researchers would find useful, as of 2017 [8] our
group not only demonstrated that it is possible to shrink the minimum reproducible feature
size of stereolithographic (SLA) 3D printers to sizes that are usable for LoC, but the feature
sizes are in the range of soft lithography based LoC produced with photolithographically
defined molds.

3D printing brings several advantages over PDMS based LoC:

o Cost: Depending on the technique used to produce the molds for the soft lithography,
3D printing can be significantly cheaper or more expensive than PDMS. Given that
a 3D printer has performance most similar to LoC produced with photolithographic
molds, a 3D printer capable of printing LoC is around $50,000 in equipment costs,

with recurring expenses being much lower than photolithography comparatively [4].

o Time: microfluidic devices can quickly be designed using any 3D modeling CAD soft-
ware that easily can turn those designs into a 3D printable format and modify existing
designs, unlike soft lithography which requires new molds to be created to modify the
device which is a time intensive process. Additionally once the PDMS bulk has been
cured, the individual layers of the device need to be aligned and bonded to construct

the final device. All told, producing a new PDMS device typically takes a day or two

www.manaraa.com

compared to the time required to manufacture and test a 3D printed device is typically

under 15 minutes even for prints with several hundred layers.

o Materials: SLA 3D printers use photosensitive resin as the build material. By adjusting
the chemical constituents of the resin, new properties can be controlled in the device,
like bio-compatibility or mechanical rigidity of the cured material. This gives resin

greater flexibility in terms of chemical properties than PDMS.

For these reasons, 3D printing is an attractive alternative to soft lithography that
uses photolithographcally produced molds. However as a manufacturing technique it still
has a number of teething issues, such as producing devices correctly on a consistent basis.
Whereas photolithography has been used to create integrated circuits since the 1960s and
has that experience to draw from when creating LoC, 3D printing LoC was only proposed
in 1994 [7], however much of the research in the field dates to the early 2010s, coinciding
with the boom in popularity 3D printing experienced at that time. Given the newness of the
technology, engineers are stll working on overcoming the learning curve of the manufacturing
process.

The process to overcome the 3D printing learning curve is the same process that
scientists use to do science, including, ironically, spending excessive amounts of time wrestling
with tools instead of doing experiments. This problem has become very evident in our lab
as we have had to shift to creating our own custom 3D printers to further research of novel
microfluidic devices and designs. As new components (such as motorized stages, light engines
and calibration mechanisms) are constantly being added and removed from the system to try
and characterize the behavior of our 3D printers and increase the consistency and quality of
the prints, it has created a tremendous strain on the system software that is used to control
and collect data from all of the various electronics that make up the 3D printer due to poor
software design.

Previous attempts at system software have been made, but they were lacking in three
critical areas: modularity, ease of use and reliability. Modularity is the ability to add and
remove hardware drivers to the system software and the ability to use a variety of tools to

control the system software. Ease of use is how difficult it is to add new hardware drivers

www.manaraa.com

to the system software in a way that makes it work with the rest of the software. And
reliability is having the architecture built on good programming practices and having an
extensive testing framework to ensure that updates to the code are functioning properly. In
this thesis I will outline the process taken to design modular, easy to use and reliable system
software and how a create, test and register development pattern was used to realize these
design goals.

This thesis will also go through the tools, architecture, code and implementation
challenges of building system software for SLA 3D printers for our research group. Topics
like inter-process communication protocols, APIs, hardware specific interfaces, automation,
testing methodologies, hardware configuration management, web based GUI integration, and
development patterns will be discussed, along with appropriate background information.

This thesis will review all of the necessary background information about previous
attempts at system software as well as the tools that were selected to implement it in
chapter 2. Chapters 3 and 4 will respectively provide low and high detail explanations of
the architecture, with chapter 5 being an overview of the code base’s organization. Finally

chapter 6 explains the development patterns that can be used to streamline various aspects

of the development process.

www.manharaa.com

CHAPTER 2. BACKGROUND

2.1 How SLA 3D Printing Works

2.1.1 Resin and light

Devices made on a SLA 3D printer use photosensitive resin as the built material. The
resin is specially designed to remain in a liquid state under normal conditions unless it is
exposed to certain wavelengths of light, at which point it polymerizes and becomes a solid.
The thickness of a layer of polymerized resin is is a function of how long the resin is exposed
to the light, with different resins having different absorbency. By stacking thin layers of
polymerized resin on top of each other with each layer varying in shape, a three dimensional
object can be created. The results of this process can be seen in figures 2.1 and 2.2.

To print an object there needs to be a mechanism for controlling the exposure of
light on the resin and a mechanism for stacking the layers of resin on top of each other. To
control the light, a device known as a light engine is used to project an image onto the resin.
The light engine uses a light source that emits a specific wavelength light to project a grey
scale image on the resin. As shown in Figure 2.3, by setting the pixels in the image to black
or white, a layer of resin can be polymerized with a specific, detailed pattern. The optics
that are attached to the light engine are then used to reduce the overall pixel pitch to a size
typically less than 10 pum, which constitutes the minimum feature size of a 3D print.

Stacking polymerized layers of resin requires a mixture of chemically treated surfaces
and coordination between at least one motorized stage and the light engine. As shown in
Figure 2.4, a build table that is attached to a motorized stage, lowers the most recently
exposed layer into a filled resin tray until the distance between it and the bottom of the
resin tray is the same as the desired layer height, creating a thin layer of liquid resin. This

thin layer of liquid resin is then exposed to an image of a cross section of the device at which

www.manaraa.com

point the newly polymerized layer is connected to both the build table and the bottom of
the resin tray.

Due to the chemical bond between the new layer to the previous layer being stronger
than the bond of the new layer to the bottom of the resin tray, the build table can be moved
upward to delaminate the new layer only from the bottom of the resin tray and allow for
unpolymerized resin to flow in and replace the polymerized resin. At this point the process
is ready to be repeated for the next layer in the device. An example of the hardware required

to execute this process can be seen in figure 2.5.

2.1.2 Focus Calibration

Unsurprisingly, having the ability to make micrometer sized features requires microm-
eter levels of precision in how the hardware components are aligned with each other. For a
SLA 3D printer this translates into getting the image that is projected by the light engine
in focus relative to the bottom of the resin tray within tens of microns, similar to how the
image projected by a movie theater projector is focused on a screen. Furthermore, the plane
that the image is being projected in needs to be parallel with the plane made by the bottom
of the resin tray, otherwise only portions of the image will be in focus.

To calibrate the 3D printer, the light engine projects its image on an angled mirror
that reflects the image upward into the resin tray, which can also be seen in figure 2.5. The
height of the image plane is adjusted by changing the distance of the mirror from the light
engine optics, and the tip and tilt of the image plane is controlled by a gimbal that the mirror
is mounted on. All three of these axes are connected to motors and can be programmatically
controlled. Finally, a microscope is used to view pixels on the bottom of the resin tray to
observe how focused they are. Currently calibrating the 3D printer can be a time consuming
and difficult process that is entirely done by hand, however research is currently being done

to try and automate this process.

www.manaraa.com

2.1.3 Electronics

The bare minimum number of electronic components needed to run a microfluidic
SLA 3D printer are four motorized stages (one for the build table, three for the calibration
mirror), one light engine and a microscope for calibration [8]. All of these components are
connected to a single computer that contains the drivers and software routines for controlling
the 3D printer. Earlier iterations of the 3D printer used a dedicated desktop computer, but
more recent versions are able to run on a Raspberry Pi 3B4. The reasons for this change
will be discussed in the section 2.2.

It is important to note that while this basic set of electronic hardware will produce a
functional 3D printer, the printer can struggle to produce consistent results, which stymies
the reproducibility of data gathered using the devices made on said printer. To better
understand why this is, new pieces of electronic driven hardware are frequently being added
and taken away from the 3D printer to characterize the hardware and the 3D printing process
as a whole. It is anticipated that some of these hardware components may become necessary
permanent components of the 3D printer in the future, a process that has already occurred

multiple times, resulting in the creation of entirely new 3D printers with different hardware.

2.2 Previous Attempts at System Software

As the hardware for the 3D printer has progressed, the system software that accom-
panied it has gone through two main evolutions, one as a desktop application and another as
a web based application. The unique problems and pitfalls of both of these pieces of software
are key to understanding many of the design decisions that were made when creating and

implementing the current iteration of system software.

2.2.1 Desktop Application

Initially, the printer was connected to and controlled by a desktop computer running
Windows with the system software running as a desktop application with the software built
off the Qt frontend framework using Python. Qt, more than anything, was the cause of most

of the software limitations in this evolution of the system software.

www.manaraa.com

While Qt provides excellent tools for building and designing GUIs, it heavily relies
on a single, small library of pre-made components that are difficult to customize. The
components themselves are based on the design ideals from the early to mid 2000s, making
it impossible to build GUIs that benefited from modern user interface design principles that
have been pioneered by web applications over the last 15 years. This was all exacerbated
by the Python version of Qt being a port of Qt’s main C++ version, which contained much
better documentation and support resources.

Another serious limitation was how opinionated the Qt framework could be. Qt has
a very specific way that everything must be done in relation to the GUI, and this eventually
caused Qt to become the core of the entire system software. Given the previously mentioned
problems with the GUI, it created a situation where Qt couldn’t be switched out for a better
technology without throwing away the rest of the system software with it. Admittedly this
problem could have been avoided if the system software had had its architecture well defined
prior to adding Qt, however the students who created the code base had limited experience
with software engineering and they allowed a software library that did not perform the main
task of the system software to dictate how the system software was constructed.

The more fundamental problem with this iteration of the system software actually had
nothing to do with the software. Having a full desktop computer with screen and keyboard
run the 3D printer was expensive and it dramatically increased the physical footprint of
the 3D printer. Additionally, updating the Qt frontend required creating a new binary file,
which creates a dependency for how the GUI gets distributed to users that was difficult to
update and maintain. All together this limited the kinds of environments in which users
could access the 3D printer.

One thing that the Qt system software did do right was the usage of dummy com-
ponents for development. Dummy components are used to emulate pieces of software that
rely on another piece of software or hardware to function, like a database or a device driver.
As a design pattern they are excellent for testing the functionality of the system software
and they can allow for emulation of 3D printer behavior in the absence of hardware. How-

ever the limitations imposed by the architecture kept the dummy components from acting as

www.manaraa.com

truly generic drivers which significantly hampered their ability to emulate different hardware

configurations.

2.2.2 Web Application

The next evolution came with the migration of the system software onto a Raspberry
Pi where it could run headless as part of a web server, negating the need for the 3D printer to
have a dedicated screen and keyboard. This also migrated the GUI to a web frontend, which
eliminated the distribution problem that the desktop application had, as simply refreshing
the browser would send the most recent version of the GUI. It also gave access to the large
and powerful ecosystem of web development and networking tools and their very active
communities. In short, the wider variety of tools made it much easier to create powerful
system software that met the needs of the researchers.

However a number of design decisions were made that limited the potential of this
evolution. For example, the tools used to build the frontend were primitive by web standards,
using only Jinja templates, which provides simple customization of page content and basic
if/else logic to HTML, and bootstrap, a library of simple, pre-stylized HTML components,
and a grid based layout engine. When compared to modern Javascript frontend frameworks,
the frontend lacked features like a dedicated debugger, integration with NodeJS and by
extent, its extensive package library, unit tests, state management and a framework for
organizing the code in an easily maintainable and modular way.

Another interesting design choice was to have the front and backend communicated
over web sockets instead of traditional single use HT'TP requests. Web sockets are useful
because they provide persistent bi-directional communication between the front and backend
which easily enables publish-subscribe architectures. HTTP requests on the other hand must
be instigated by the frontend and the backend can only respond once to any request. However
documenting the communication protocol for a web socket is harder to do than for HTTP
requests.

Web sockets do not natively offer any features for structuring data that is sent through
them, requiring for the parties on both ends of the socket to be sharing a common messaging

schemagthatycan.be serialized into binary. HTTP requests on the other hand do provide

www.manaraa.com

some data structuring natively, especially for files, which makes them easier to document.
Additionally, by nature of HT'TP requests being constructed completely of plain text, the
tools for sending HTTP requests are simpler and more readily available than the ones for
web sockets, which is also due in part to their universal usage.

One area that the system software did go with a more universal model was its usage
of the model-view-controller (MVC) architecture. MVC describes how the server for a web
application handles responding to incoming HTTP requests. It is based on the assumption
that the HTTP requests are asking the server to query a database and return the results of
the queried data, possibly with the data embedded inside of some HTML / CSS.

As shown in figure 2.6, a MVC architecture is made up of three parts: the model, the

view and the controller:

o The model is a representation of the data in the database and it has the functionality

to read and write to the database.

o When the controller completes querying the database, it hands the result to the view,
which takes care of formatting the data for consumption by the frontend and respond-

ing to the original request.

o The controller handles receiving the HTTP request, telling the model to execute a

query and passing that input to the view.

Overall, MVC does an excellent job at rendering static web pages with customized data.

But the implementation of MVC needed to be modified to better accommodate the
realities of the hardware. Instead of having a traditional database and models to query the
database, the current state of the 3D printer hardware was considered to be the database
and the hardware drivers were used as the models. This works well if all the frontend is doing
is rendering the current state of the hardware and providing a GUI for sending commands
to update the state of the hardware.

However during a print job, the frontend needs to display the ever changing states
of the hardware and the software routine that is running the print job. The uni-directional

and single use nature of HT'TP requests make them inconvenient, but not impossible to use

10

www.manaraa.com

for this kind of task, which is better served by the persistent and bi-directional nature of
web sockets. For this reason the MVC architecture was primarily used for initially serving
the frontend, using the aforementioned Jinja templates, but a publish-subscribe architecture
built with web sockets were used to send updates about the state of the 3D printer to the
frontend.

Overall this mixing of architectures is a great way to structure the interface between
a web based frontend and the rest of the code that controls the 3D printer. But the imple-
mentation of this architecture had its own set of problems, starting with the relationship of
the backend web framework to the core functionality of the system software.

Similar to how the core functionality of the system software was tightly integrated
with Qt, the web application version of the system software was tightly integrated with
the web framework Flask, which will be discussed further in chapter 4. While Flask is not
as opinionated as Qt, allowing for greater flexibility in code structure, the system software
could not run without starting Flask, thus once again tying the system software to a software
library that does not perform the core functionality of the system software.

One unfortunate side effect of how the system software was integrated with Flask was
that the greater flexibility of code structure that Flask provides did not translate into well
organized or structured code. The poorly defined organization of the code base translated
to the core of the system software being a collection of threads that share control over the
hardware drivers. While this architectureless arrangement is workable if not ideal, nothing
was ever made thread safe and executing a print job relies heavily on what sequence com-
mands are sent from the frontend and trust in how long it takes each thread to execute. It
worked, but adding new hardware or modifying the print routine were a nightmare, and the
entire system was a software bug bomb that was waiting to detonate.

Another structural issue in the architecture was that all of the threads ran in the same
process. For most programming languages this is not an issue, but Python has a fundamental
limitation known as the global interpreter lock (GIL) that restricts Python from executing
multiple lines of code at once in the same process [10]. Usually multi-threaded applications

get an increase in performance from the parallel execution of threads, but unless a Python

11

www.manaraa.com

application is spread across multiple processes, its performance will be bound to slightly less
than that of a single thread, due to overhead lost to context switching between threads.

This results in the system software being unable to take full advantage of the comput-
ing resources on the Raspberry Pi and adding dedicated processes to software often require
architectural considerations. While this limitation does not currently impact the perfor-
mance of the system software, current research into automating the calibration of the 3D
printer depends on cameras and mathematically intense image processing techniques, and
will likely require more computing resources.

Finally the original design for the system software regrettably did not include any
dummy components and instead relied on the debug features of the flask web server. In
very recent additions to the software dummy drivers have been added, but structurally
they require that a dummy driver be written for each new driver that is added to the
system software which tremendously limits the modularity and scalability of the dummy

components.

2.2.3 Summary of Lessons Learned

The following are the lessons learned from previous attempts at creating system

software:

o Desktop VS Web Applications The medium over which the system software commu-
nicates to the users over matters. The debate between desktop versus web application
at its core is a decision between using a communication medium that is built on a
specific technology or a collection of protocols that are implemented and integrated
into a large number of technologies. For this reason a web application is more flexible
and more modular, to the point that the frontend of a web application could be a

desktop application as well as a web page.

o The Frontend Needs Its Own Architecture The frontend needs its own architecture that
is completely separate from the rest of the system software for the sake of modularity

and to encourage structured and well organized code. Web applications benefit from

12

www.manaraa.com

a large and thriving ecosystem but they also require a number of additional tools to

make them convenient to build.

o The Backend Needs Its Own Architecture The web server needs its own architecture
that is dedicated to sending and receiving messages to the frontend. A combination
of the MVC and publish-subscribe architectures work well to cover the needs of the

system software.

o The System Software Core Needs Its Own Architecture The core of the system software
needs its own architecture that is well defined with an organized code base that does not
restrict the software from taking advantage of the full hardware computing resources. It
also should not be built on top of another library that has its own architecture. Finally
dummy components should be designed into the architecture from the beginning and

be deeply integrated into the software to maximize their effectiveness.

Many missteps were made in the previous evolutions of the 3D printer system software
that helped develop a better understanding of what the needs of system software are in a

research setting. These lessons proved invaluable in the design and implementation of the

new architecture.

13

www.manharaa.com

secase HFW WD HV curr det mag = 2/4/2020 F——40 pmg{

- Standard 138 pm 14.1325 mm 5.00 kV 50 pA ETD 1 500 x 9:36:43 AM

Figure 2.1: 10 pm layers stacked on top of each other as viewed under a scanning electron

microscope. The dimples along the layers indicate individual pixels from the cross sectional
image.

14

www.manharaa.com

Figure 2.2: 3D printed microfluidic pump. The grid pattern is a by product of the individual
pixels in the layer images.

Diamond
Pixel
Pattern

Printed
Device

y
z~ X

Figure 2.3: Illustration of a cross-sectional layer of a 3D print being projected as an image
onto the build platform of the Asiga Pico Plus 3D printer. Grey pixels are turned off and
yellow pixels are turn on. Our recent custom 3D printers operate on the same principle but
do not have the pixels rotated 45°. Image used with permission from [9].

15

www.manharaa.com

Printed Next

y X
Device A Layer "?Z

M Resin

Light Tray

1 N D Designed
5. EEEEE—
g-_--- S====== Channel
2 EEEEd : 7
1 PEEss

layer O s Xé-?

Figure 2.4: Layer-by-layer fabrication process for a simplified device. The device is rotated
180°in (D) relative to (A-C). Image used with permission from [9].

16

www.manharaa.com

Build
Stage

Light

Build

Resin
Tray

Angled
Calibration
Mirror

Figure 2.5: CAD model of a SLA 3D Printer

17

www.manharaa.com

~

Request < h
USER Response
A 4
CONTROLLER Send Data VIEW
Request Information
Response Information MODEL

Figure 2.6: Model-View-Controller Architecture

18

www.manharaa.com

CHAPTER 3. SIMPLIFIED ARCHITECTURE DESCRIPTION

This chapter will provide a simplified model of the system software’s architecture. It
will focus on the organizational units that make up the architecture, explaining what the job
of each component is and what tools each component uses to accomplish its job. Chapters

4 and 5 provide more on the specifics of how the tools execute the job of each component.

3.1 Tools

As was demonstrated in chapter 2.2 the tools used to build the system software have
a big influence on the architecture. Because of this, a critical part of understanding the
architecture is understanding what tools were selected and why they were selected. The

following is an review of the tools that were chosen to build the system software.

3.1.1 Coding Languages

Python was selected as the language for the backend for the following reasons:

o Easy to learn The primary end users of the system software are students with an
electrical engineering or chemistry background. While some of the students may have
prior programming experience, it is expected that most will have had little to no formal
software engineering experience or education, and the system software will likely be
the largest and most complicated code base that they have ever worked on. Because
Python is easy to learn and has a relatively intuitive syntax, this makes the software

more accessible to new users.

e Speed Python is not considered a fast language in terms of execution time. However
during normal operation, the system software spends a lot of time communicating with

hardware and waiting for the hardware to respond. This is especially prevalent with a

19

www.manaraa.com

stage that controls an axis, as commanding the axis to move will result in the system
software having to stall while waiting for the stage to complete the action. On top
of this, many Python packages, especially mathematical computation packages like
numpy, scipy and openCV, call binaries that were originally written in C/C++, and
therefore are incredibly performant. In short, Python is fast enough or has the ability

to be made fast enough for the task at hand.

o Rich ecosystem Python’s package ecosystem is one of the largest compared to other
programming languages. The package manager pip makes it quick and easy to add
new and complicated functionality into the code, which makes Python excel at rapid
prototyping and experimentation. These are key features given the trial and error

nature of research.

As Javascript is the industry standard for web development, it was the natural choice
for the frontend. Frontend development specifically was done with the use of NodelJS, a server
side implementation of Javascript, which provided access to the NodeJS package manager,
npm. NodelS, like Python, has a rich and easy to access package ecosystem for frontend

development and deployment.

3.1.2 Operating Systems

As discussed in chapter 2, recent versions of the 3D printer are controlled by a Rasp-
berry Pi, which best supports the Raspbian Linux distribution. This makes Linux the
production and development environment of choice, although other Unix based operating
systems, like macOS, have been shown to be equally capable. Unfortunately the system
software is not compatible with Windows or the Windows Subsystem for Linux (WSL 1.0),
as the python implementation of mutexes for the N'T kernel are not picklizable, which severely
limits what architectures can be created. Compatibility has not been tested with WSL 2.0.

Bash is used to run the system software and in some cases bash scripts have been
written to automate installation and starting the system software or to act as an alias for

unwieldy commands.

20

www.manaraa.com

3.1.3 Web Server

Flask is a popular backend web framework written in Python that takes an a la carte
approach to structure, meaning that the framework doesn’t have strict rules about how its
application code needs to be formatted and organized, instead providing a loosely connected
set of tools that can be adapted to a wide variety of architectures. Given that the system
software requires a non-standard architecture in order to remain modular, Flask’s flexibility
is a critical feature. Flask also provides a convenient development server, which has been
used in lieu of a dedicated web server. While this server should be replaced by a dedicated
web server at some point in the future, it has proven capable of handling the current work
load.

In conjunction with Flask, a package called flask-restplus is used to assist in the
defining, validating and documenting of the RESTful API. Critically, the package generates
a web page alongside the frontend of the system software that documents all of the API
endpoints and also provides a simple interface for sending API commands to the backend,
which makes it easy to test and develop new application software for the 3D printer.

Importantly, the package does this by generating a file based on the OpenAPI 3.0
specification, known as a swagger file, that contains a full description of the API. This file
can be downloaded from the web server and used to automatically generate a library of
functions for the system software API in a variety of languages, which drastically simplifies

the process of writing new applications for the 3D printer.

3.1.4 Configuration and Print Settings Files

Due to the JSON file format already being used to describe the settings for print jobs
and their nearly identical formatting to Python dictionaries, it was chosen as the file format
for the configuration files. To make it easier to validate configuration files and print job
settings files, schema files, based on the proposed JSON schema standard, have been created
that rigorously define what constitutes as a valid configuration or settings file.

Similar to the Python flask-restplus package, there is a NodeJS package called boot-

print that creates a static web page with a description of a given JSON schema, which is

21

www.manaraa.com

critical to making it easy for researchers to create and edit configuration files for the system

software.

3.1.5 Frontend Framework

Between Angular, React and Vue, the three most popular web frameworks at the time
of this writing, Vue differentiated itself for sharing the same a la carte philosophy as Flask,
and for having a reputation for being the simplest to learn. Additionally Vue provides a
number of convenient tools, such as the url router, vueter. This removes the need for Flask
to handle page requests outside of an initial request for a compiled version of the frontend
code, allowing for the backend and the frontend code to be completely independent and
separate from each other, thus improving the modularity of the system software.

A significant feature of Vue is its component oriented philosophy, which is a version
of object oriented philosophy adapted to web development. Vue components are organized
into .vue files that contain all of the HTML / CSS / Javascript for a single UI component.
Components can be nested inside of each other, and Vue’s rendering engine ensures that the
changes to the Ul in one component do not impact how another component is rendered.

Vue also has the ability to make use of Ul component libraries, like bootstrap, however
another similar library called Vuetify was selected over bootstrap. Vuetify is a Vue friendly
implementation of Google’s Material Design Language that offers a much larger selection of
UI components and customization than bootstrap, while also providing its own grid layout
system. It also has superb documentation that focuses on providing examples that are
editable directly on the documentation’s web site, which creates a hands on experience to
working and learning about how its API works. All of these features combine to make
prototyping new, high quality user interfaces far easier than it was in the previous frontend.

Vue also has a state management system call Vuex, which allows state to be shared
between multiple Ul components, a useful feature for keeping multiple web pages in sync
with the state of the 3D printer. And finally, there is a Vue debugging add-on available for
all of the popular web browsers that augments their built in debugging tools so that the
state of each component and the values of the variables in the state management system can

easily-beviewed.and.changed in a way that reflects the structure of the Vue project.

22

www.manaraa.com

3.1.6 Unit Testing

Python has a unit testing library as part of its standard library which is appropriately
called unittest. It takes an object oriented approach to testing, which enables the tests to

roughly mirror the structure of the rest of the code.

3.2 Simplified Architecture Description

As shown in figure 3.1, the system software is split into three distinct sections: the
frontend, the web server and the system software core. Each of these sections have their
own architecture that is independent of any other section. However it is worth noting that
the web server and the core are part of the same code base and often will be referred to
collectively as the backend. While the code for the web server and system software core do
remain separate from one another, they interface with each other and share some of the same
resources, however, they remain distinct entities to the point that they each have their own
set of unit tests. The relationship between the web server architecture and the core will be

covered in depth in chapter 4.

Raspberry Pi 3B+ Remote Computer

WEB

CORE SERVER FRONTEND

Figure 3.1: 3D Printer System Software Simplified Architecture

23

www.manharaa.com

3.2.1 Web Server

As the web server is a go-between for communication between the frontend and the
core, its design had a significant impact on the other architectures. As was discussed in
chapter 2.2, a blended MVC and publish-subscribe architecture is ideal for the system soft-
ware as a whole. However unlike the previous evolution, it was decided to forgo the use of
web sockets and instead rely exclusively on HTTP requests.

In terms of the design goals, web sockets and HTTP requests were determined to
have roughly the same level of reliability, but due to HT'TP requests universal usage and
having some built-in data structuring, it was considered a more modular interface than web
sockets. Also from the perspective of researchers who may need to write a quick and dirty
bash script to run an experiment on a 3D printer, web sockets would require access to the
data structures that make up the messaging schema, which creates an additional dependency
that HTTP requests do not have. Because of the ease of generating a web page with the
documentation for a HT'TP request based API via a swagger file, it is easier for a researcher,
especially an inexperienced one, to build bash scripts or other single use programs. This is
further aided by flask-restplus which generates a curl command for each API endpoint as
part of the documentation.

While the exclusion of web sockets ultimately gives end users a better experience, it
makes the job of the programmer and architects harder. Because web sockets no longer can
be relied on to implement the publish-subscribe architecture, the frontend and core behavior
must be tailored to the web server’s MVC architecture to help it emulate a publish-subscribe
architecture. For the frontend this means that if there is some data that it wants to become
a subscriber of, it will have to continuously poll the data’s API endpoint to get the most
recent value. Obviously this will cause the web server to be spammed with HTTP requests
unless the backend does something to accommodate for this behavior.

The web server compensates for the behavior of the frontend by creating API end-
points that are intended exclusively for subscribers. These endpoints trigger special mes-
sages to the core which tell it to respond differently to these messages. The core does this by
not immediately responding to the message, but instead waiting until the data in question

changes or until a _periodic timer runs out before responding.

24

www.manaraa.com

This approach works well when the data that has been subscribed to is updating
infrequently and missing updates is not critical. But for data that is updating faster than
the latency of the core responding to a subscriber message, the response being sent over the
network back to the frontend and having the frontend send another request to the backend,
then core responses will require sending the last N updates to the data with every message
response. This change in behavior fits into the frontend and core architectures, however it
does require more code to implement on the backend and generally some foreknowledge on

the programmers part when adding features to both the front and backend.

3.2.2 Frontend

Aside from the behavior necessary to adapt the web server to a publish-subscribe
architecture, the frontend uses the Vue framework described in section 3.1.5 and relies on
its architecture. However because the frontend is intended to be modular, the Vue architec-
ture should not be viewed as the definitive architecture for the frontend. Due to the HTTP
based API, anything from simple scripts, to a command line prompt to an entirely different
framework like Qt could possibly constitute the frontend architecture. For this reason ex-
plaining the architecture of any specific frontend is best served by its documentation, and
the specifics of the Vue framework’s philosophy and architecture [11] [12] will not be covered
by this thesis.

3.2.3 System Software Core

The functional portion of the system software core was implemented entirely from
scratch, depending as much as possible exclusively on the Python standard library. To avoid
the problems with the GIL that were discussed in chapter 2.2.2, the architecture took a
process oriented approach, with each type of hardware being given its own process and with
each software oriented task being given its own process. Figure 3.2 illustrates the minimum

required set of processes for running a 3D printer. Each of the processes do the following:

o Message Router The message router constitutes the core of the system software core.

As_the name suggests,. it handles routing messages between components that reside

25

www.manaraa.com

Backend
Web Server MESSAGES CONFIGURATION
MANAGER
Key
TESTS
L
\
Core
LIBRARY
MESSAGE
ROUTER
ARCHITECTURE
LIGHT
rocess ENGINES CoNTROLLER oRocEeses
PROCESS

Figure 3.2: Backend architecture for a 3D printer

in different processes. It also handles communicating with the web server, which
is represented here as its own process, although in the most current version of the
software the web server runs in the message router process. The reasons for this will
be discussed in chapter 4.1 with the details of the message router being extensively

covered in the same chapter.

« Light Engines Process The light engines process encapsulates the drivers of all of the
light engines that the system software is currently configured to control. It also contains
code that routes messages to the correct driver, enabling the system software to control

multiple light engines at once.

26

www.manharaa.com

o Axes Process The axes process performs the same job as the light engines process but
for the hardware axes. However it differs slightly from the light engines to accommo-
date the fact that stage drivers often control multiple axes. These differences will be

discussed in chapters 4 and 5.

o Print Job Controller The print job controller contains all of the logic for executing
a print job. It functions by sending messages to the light engine and axes processes
through the message router based on the contents of a print job file. The print job file
contains a print_ settings.json file, which is formatted according to a JSON schema,
and a folder of images of all of the cross sections of the print. Based on the content of
the print_ settings.json file, the print job controller moves the build axis to the correct
layer height, sets the light engine with the image or images for that layer, and then
turns on the light engine for the properly configured period of time. This process is

then repeated for each layer of the 3D print.

When examined in relation to the entire backend, the benefits of the core’s architec-

ture become become more apparent.

3.2.4 Backend

While the backend encapsulates two distinct architectures, out of necessity or conve-
nience several key libraries were created to help integrate the architectures with each other.

They are the following:

o Messages The messages library is a standardized set of classes that act as the messaging
protocol for talking to the processes in the core. When the web server receives a HT'TP
request, it creates the appropriate message and sends it to the message router. The
message router then uses information in the message to determine which process to

forward the message to. The print job controller uses messages in the exact same way.

o Configuration Manager When the backend is first started, it requires that a valid con-
figuration file is provided. The configuration manager parses apart the configuration

file with the help,of.a,d SON schema and produces objects that can easily be used to

27

www.manaraa.com

initialize the web server or other pieces of the core. For the light engines and axes
processes, this information determines what hardware drivers are loaded and what set-
tings they use during normal operation, such as running in debug mode or running a

serial connection at a specific baud rate.

o Tests There are three types of tests in the tests library: hardware, core and web
server. Hardware tests are simple python scripts that test if a driver can execute a test
sequence on the hardware. Hardware tests do not use unittest because the library has
a tendency to break serial connections and the structure of the unittest library often
makes hardware tests harder to code than is necessary. Core tests do use the unittest
library and are built around specific processes, with each test focused on a message
from the processes messaging protocol. Web server tests focus on testing the API
handlers and require an instance of the backend to be running on the same computer

the tests are being run from.

3.2.5 Putting it all together

Now that all of the components that make up the backend are described, it is possible
to see why this architecture enables modular, easy to use and reliable system software.
From a researcher’s perspective, reconfiguring the system software to work with a different
arrangement of hardware, assuming that the drivers have already been written and integrated
into the system software, is a matter of adding the configuration information for the driver
to the configuration file and restarting the backend. And tweaking hardware behavior for an
experiment, such as imposing software defined limits on the travel distance of a stage, also
can be as simple as changing the configuration file. Similar changes in previous evolutions
of the system software would have required actual changes to the code or extensive rewrites.

If a needed hardware driver doesn’t exist, say for a new light engine, but a process
for that type of hardware does exist, then it can be added by writing the driver, validating
the driver with a hardware test, registering the driver with correct process, creating a con-
figuration handler for the driver and registering the handler with the configuration manager.

While this requires significantly more effort than just editing a configuration file, the process

28

www.manaraa.com

is straightforward, well defined, provides a way to test the new driver and ultimately creates
an easily configurable hardware driver that integrates with other preexisting software for
that process, like the frontend or the print job controller. In other words, the hardest part
of adding a new piece of hardware is getting the hardware driver to work, not getting the
system software to work with the new hardware.

The most difficult task a researcher will regularly face is adding a new piece of hard-
ware that doesn’t already have a process for that type of hardware, like a device for calibrat-
ing a 3D printer. What makes this difficult is determining what the API and the messaging
protocol need to look like, a process that is fraught with assumptions, several of which will
inevitably be incorrect and require time consuming rewrites of the code. There are steps
that can be taken to make this process easier and they are the topic of chapter 6.

Once the API and messaging protocols are determined adding the new hardware
becomes relatively straightforward. First, messages for the messaging protocol need to be
created and registered. Second, the process needs to be created, tested and registered, and
a configuration handler needs to be created and registered for it. Finally the same steps for
adding a new hardware driver need to be followed. Adding a process that handles a purely
software task, like a new print job controller, follows a similar procedure and is discussed in
depth in chapter 6.

Overall the architecture of the backend facilitates a create, test and register pattern
during development. When combined with the ability to customize the processes that are
running in the core via configuration files the architecture fulfills the goals of being modular,
easy to use and reliable while also side stepping the performance and dependency limitations

of previous evolutions of the system software.

29

www.manaraa.com

CHAPTER 4. DETAILED ARCHITECTURE DESCRIPTION

While the simplified architecture described in chapter 3 is not terribly complex at first
glance, the dependence on multiple processes allow the code to execute in multiple places at
the same time, which makes the state of the system software harder to track. To exacerbate
the issue, each process has multiple threads running as part of it with some of these threads
running perpetually while others are being created and destroyed as needed. Together they
have intricate interactions that, when performed incorrectly, can have disasterous conse-
quences.

It is important to understand how all of the processes function on a thread level and
what patterns they follow. As such, the architecture of the individual processes, how the
threads inside of each process are started and stopped and how the threads function during
normal operation will be the topic of this chapter. However a researcher could feasibly
get away with not understanding the information in this chapter simply by following the
guidelines and patterns in chapter 6 and using chapter 5 as a reference. But this model
of the system software helps make critical sections of the code make sense and will provide

patterns for researchers to imitate as they build their own processes.

4.1 Starting and stopping the backend

When the system software is started, it is done by calling a script like so:

1$ python main.py

This script starts a new process with a single thread running inside of it. Over the

course of this thread’s lifetime it will perform three jobs:

1. Start all of the processes, except for the message router. This first process will become

the message router.

30

www.manaraa.com

2. Setup and perform all the jobs that the message router does.

3. Shutdown all of the processes cleanly when the stop signal is received.

The main.py thread is alive for the entire lifetime of the backend and is responsible
for starting and stopping the system software cleanly. While the duties of this thread are
straightforward, technical limitations in Flask’s development web server forced this thread
and process to be architected differently than the ideal.

Ideally, as was shown in Figure 3.2, the web server should run in its own process and
communicate with the message router the same as the other processes. However Flask’s web
server was not designed to run as a background task and as such does not provide an API
for stopping the web server in software. This requires the web server to run as a foreground
process and can only be stopped from the terminal. If done incorrectly, the web server
threads will be orphaned when the system software shuts down, which can cause problems
with access to networking resources and, if done repeatedly, will cause the Raspberry Pi to
run out of RAM.

The easiest workaround for this problem was to integrate the web server into the
main process, which consequently combined the message router and web server into a single
process. To date this has not slowed down the backend noticeably and the main.py thread
is able to shut down everything cleanly. Unfortunately this hurts modularity of the system
software as the core and the web server are connected to each other, although steps have been
taken to isolate their code from each other as much as possible. This technical limitation
is one of several reasons why Flask’s development web server needs to be replaced by a

dedicated web server.

4.2 Structure of the message router process

Because of the compromise that had to be made on the web server’s account, the
thread structure and management of the message router process was inevitably complicated
by the addition of the web server. Normally the message router is only made up of the core
main.py thread, and a series of threads that each are dedicated to handling incoming and

out,going messages-for.each.process connected to the message router.

31

www.manaraa.com

Light
Engines [
Process

Message Router
Process

Outgoing
Message
Queue

Incoming
Message
Queue

Light Engine Incoming
Message Handler
Thread

API
Request
Handler
Thread

— Response =———p

Flask Web Server
Thread

Main.py Thread — API Request

Figure 4.1: Threads used in the message router process to service a light engine api request.
Threads that are directly adjacent to each other have a parent-child relationship to each
other, with the thread with the largest circle being the parent. Numbered connections relate
ion i ion 4.2.1 and correlate to Figure 4.2.

32

www.manharaa.com

As can be seen in Figure 4.1, the message handler threads that normally would have
been reserved for the web server process have been replaced wholesale by the Flask web server.
This allows the web server to run in the foreground so that when it is stopped by the user,
it returns control back to main.py to finish the shutdown process. In the ideal architecture
the message router process only forwards messages between processes and handles system
level operations, like shutting down the backend. However the inclusion of the web server
forces the message router process to also handle all of the message management for the web
server.

A key feature of Flask’s development server is the ability to handle multiple HTTP
requests concurrently, which is necessary to control multiple pieces of hardware at the same
time. It does this by creating a new thread to handle each new HTTP request, which in turn
uses the message router to send messages to a specific process. In the ideal architecture,
this creates a problem where there is no way to tell what thread a response to a message is
destined for. In order to make the web server work, a data structure called a job queue is

required.

4.2.1 Handling web server messages

Figure 4.1 shows an example of the message router process receiving a HT'TP request,
sending a command to the light engines process, getting a response on the execution status
of the command from the light engines process, retrieving the response from the job queue
and turning the command response into a response to the original HT'TP request. The job
queue is a table that relates a specific message to a specific thread. By utilizing meta data
that is included in every message, which will be covered in detail in 5.2, the message router
can save the response to a command message to the job queue and signal to the thread that
originally sent the message that a response has been received. For the example detailed in

Figures 4.1 and 4.2 the entire transaction is performed as follows:

1. Flask’s web server receives an HT'TP request and creates a thread to handle servicing
and responding to the request. This thread creates the appropriate message for the

request and uses the message router to send the message. The message router adds

33

www.manaraa.com

UuID Event Response Contents
1
UuID Event Response Contents
abc notset | -
UuUID Event Response Contents
valid: True
errorMsg: None
abc set
response: Messge response
class

Figure 4.2: State of the job queue for servicing an API call in Figure 4.1. See sections 4.2.1
and 4.2.2 for further explanation.

an entry to the job queue with the message’s universal unique id (UUID) and creates

an event object that the thread can stall on to avoid using any CPU resources while

waiting for a response to the message to come back from the light engines process.

2. When the thread that monitors incoming messages from the light engines process

34

receives a message, it checks the job queue to see if there is an entry that shares the

www.manharaa.com

same UUID. If there is a match, then the incoming message is the light engine processes
response to the original message. The thread then saves this response message to that

entry in the job queue and sets the event object.

3. When the event is triggered, the API request handler thread wakes up, gets the re-
sponse message from the job queue and deletes the job queue entry. It then processes

the response message so that it can be sent out as part of the HT'TP response.

4.2.2 Forwarding messages

If the web server was in its own process then the job of keeping track of responses to
threads could be moved to the web server process, allowing the message router to only focus
on forwarding messages. Figure 4.3 shows how the message router threads handle forwarding
messages between processes with the common task of the print job controller controlling a
light engine during a print job. If the print job controller were to send a command to the

light engine process, it would go as follows:

1. The print job controller sends a message to the message router where the message is

collected by the print job controller’s incoming message handler.

2. The handler looks at the meta data of the message to determine which process it is

intended for, in this case the light engines process, and then forwards it to that process.

3. After the light engines process is done executing the command indicated by the mes-
sage, it responds by sending a command status message to the message router process,

which is intercepted by the light engines’s incoming message handler.

4. Finally the handler forwards the status message back to the print job controller, where

it moves on to the next step of its algorithm.

Overall the message router process is a convenient center point for the backend and
with some further research it could be simplified to better embody the design principles of

modularity, ease of use and reliability.

35

www.manaraa.com

Light

Engine
(Process

Message
Router
Process

Light Engine Incoming
Message Handler

Print Job Controller
Incoming Message
Handler

Incoming
Print Job
Controller
Message
Queue

Outgoing
Print Job
Controller
Message
Queue

1
Print Job
Controller —J
Process

Figure 4.3: Threads used in the message router process to forward messages from one process
to another. Threads that are directly adjacent to each other have a parent-child relationship
to each other, with the thread with the largest circle being the parent. Numbered connections
relate to the explanation in section 4.2.2.

36

www.manharaa.com

4.3 Print job process

Print Job Controller Process

Message
Sender

Print Job
State
Machine

Message
Handler

Message
Handler

Incoming Message
Handler

Incoming
Message
Queue

Message
“— Router
Process

Figure 4.4: Thread architecture for the print job controller process. Refer to the text for
further explanation. Numbered connections relate to the explanation in section 4.3.

37

www.manharaa.com

In order for a process to be able to talk to the message router it requires some
infrastructure. This infrastructure is largely pre-built and is provided by an abstract base
class that all of the processes share. Aside from setting up the messaging interface, the
structure of the communication threads for each process remain separate from any threads
that the rest of the process uses to do its job. While the hardware processes share very
similar architectures, software oriented processes, like the print job controller, can have
a wide variety of architectures and as such this section focuses on explaining the thread
architecture of the print job controller process.

When the print job controller process is first started the initial thread creates a
state machine thread, before transitioning to the incoming message handler. For every new
message that the handler receives, it creates a new thread to handle the message, much like
the web server. Figure 4.4 provides an example of all the ways that messages sent to the

print job controller process can be handled:
1. A message is received from the message router and a message handler is created for it.

2. If the message is a command that changes the state of the print job controller several

things happen:

2.1. The message handler updates the state of the state machine.

2.2. The state machine thread monitors the state machine variable for changes. When

the state changes it starts executing the code for the new state.

2.3. If part of the state’s execution includes sending a message to another process,
then the state machine thread will create a new thread to send the message.
This allows for the print job to continue executing without having to wait for a
response message. To handle correlating response messages to the threads that

they originated from, the print job controller contains a job queue of its own.

3. After the message handler has finished processing the message it creates and sends a

response message to the message router.

4. 4.1. If the incoming message is a command status message, a new message handler

thread-is-created:

38

www.manaraa.com

4.2. The message handler updates the job queue and sets the event object for the

message sender thread, which frees the message sender thread.

Like the web server, the job queue is an integral part of the print job controller. If
the web server were to be put into a separate process, it would have a similar architecture
to the print job controller process. In general, any process that requires the ability to send

messages other than as responses to other processes, will require a job queue.

4.4 Hardware processes

Compared to software based processes, processes that control hardware are simple
enough to not need a job queue. This is due to hardware processes being built to be slaves
to other processes, like the print job controller, or by manual control by a user through the

frontend. Figure 4.5 shows an example of how the light engine process handles messages:

1. The light engines process receives the incoming message and creates a message handler

thread.

2. If the message is intended to be processed by a light engine, the message handler uses
the information in the message to determine which driver to execute the message with.
Otherwise if the message was not intended for a specific light engine, like a query to
find out what drivers are loaded, then the message handler thread handles processing

the message and then creates and sends a command status message.

3. When the driver finishes, the message handler returns the result of the operation in a
command status message and uses the meta data of the original message to determine
what process the command status message should be sent to. The message is then
sent to the message router. Conversely, if the message was not intended for a specific
light engine, like a query to find out what drivers are loaded, then the message handler

thread handles processing the message and creates and sends a response.

An important feature that this architecture enables is the ability to have multiple

pieces of the same hardware connected to the system software and independently controllable

39

www.manaraa.com

at the same time. This is necessary given how many motorized stages current models of the
3D printer utilize. However supporting this feature creates a problem that afflicts the axes
process specifically.

While the thread architecture of the axes process is identical to the light engines
process, the way that the drivers are created differ. With light engines, one driver can
control only one light engine at a time. With axes, motorized stage controllers frequently
are used to control multiple stages at the same time. This makes it awkward to create an
API for the axes, as researchers care about controlling individual axes and not having to
worry or know about how the shared piece of hardware the axes are connected to operates.

As shown in Figure 4.6, to solve this problem an added layer of abstraction has been
created. Each axis connected to the stage controller has its own axis shim object which
provides a unified API interface that all axes share. The responsibility of the axis shim is to
act as a translation layer between the axis API interface and the stage controller driver, with
each axis shim only being capable of using the driver to control a single axis. The specifics

of this architecture will be covered in further detail in section 5.3.2.

4.5 File system usage

A limitation of the messages used to communicate between processes is the difficulty
of sending, receiving and sharing files between processes, due to restrictions in the data types
that the queue objects that the processes use to communicate with each other. To remedy
this, the file system is used to provide permanent storage for files, allowing for messages to
send the path to a file instead of the entire file in order to share the file.

However making files visible to the frontend, especially, for example, a web site that
wants to show what the current image a light engine is displaying, means that these files
also need to be accessible to the web server. This is complicated by a security feature known
as cross-origin resource sharing (CORS). CORS, when enabled, allows for a web server to
share restricted resources outside of the domain from where the original resource was served,
in this case the web-based frontend. When disabled, only files that are located in the web
server’s static files folder are accessible, and trying to access other files on the web server’s

file system will result ina.CORS error [13]. Many web servers and web applications disable

40

www.manaraa.com

CORS by default as it can result in arbitrary file access on the web server if configured
incorrectly.

As is shown in Figure 4.7, to avoid frustrating researchers with CORS issues in their
code, the shared file location for images, print job files and other yet unknown file types that
can be uploaded to the server are saved to the web server’s static files folder, thus allowing
CORS to remain disabled. It also provides ready access to users to all uploaded files and in
the future could easily enable frontend based file management interfaces.

As of the current version of the backend, uploaded print job files and manually set
light engine images are saved to the web server’s static files folder under the same file name,
overwriting the previous file. Until an API is created for managing individual files in the
static files folder, this approach keeps the Raspberry Pi from running out of disk storage as

new files are continuously uploaded to it.

4.6 Summary

Together the simplified and detailed architectures provide a low and medium detailed
view of the system software, which includes the terminology specific to the system software
and also the basics of how each component functions. While numerous considerations have
been made about how to architect the software to keep it modular, easy to use and resilient,
up to this point the philosophy of create, test and register has been conspicuously absent.
Moving into chapters 5 and 6 the implementation details of this philosophy will be pre-
sented in high levels of detail as the code is finally discussed directly, along with patterns to

streamline the development process.

41

www.manaraa.com

Light Engines Process

Message
Handler

Incoming Message
Handler

Incoming
Message
Queue

2

Light Engine Driver

Message
“— Router
Process

Figure 4.5: Thread architecture for the light engines process. Numbered connections relate

to the explanation in section 4.4.

42

www.manharaa.com

Axes Process

Message
Handler

Incoming Message
Handler

Axis Shims

Stage Controller

Incoming Dri
rivers

Message
Queue

Message
“—~ Router
Process

Figure 4.6: Thread architecture for the axes process with the stage controller driver and the
axes interface separated from each other.

43

www.manharaa.com

Image
Path

Light
Engine

Light Engines
Process

<=

static/uploads

Message
Router
Process

folder Write

HTTP
Request

Image

Web Server
Path

Figure 4.7: Model of how the output image on a light engine is set from the web server.

44

www.manharaa.com

CHAPTER 5. THE STRUCTURE OF THE CODE BASE

The transformation of an architecture from a series of flow charts to code is drastic,
with the resulting collection of file and folder names often bearing little resemblance to the
original architecture. To make things more difficult, as time goes on and technologies change
and more people work on the code base, the code structure will experience entropy as it ages.

While not a perfect solution, the patterns established by the create, test and register
development philosophy can slow down or contain degradation of the code base. This is
done by using the object oriented programming concept of polymorphism to establish well
defined interfaces for different portions of the system software. All of the processes in the
backend of the system software use a series of abstract base classes to signal the expectations
of what the code should look like to researchers working in the code. For this reason, the
primarily focus of this chapter will be the abstract base classes in the system software and
the structure of files that use abstract base classes from other libraries. Additionally portions
of the code that are intended for registering new code to the system software will also be
addressed.

To avoid copy and pasting files that contain hundreds of lines of code into this chapter,
code examples have been simplified and abbreviated where possible. The full text for each file
mentioned have been included in the appendix (chapter A). That being said, it is expected
that the reader can read and understand Python.

It is also worth noting that all of the different components of the system software are
heavily interconnected with each other and that at times some aspects of it will be referenced
with little to no explanation, only to be explained later in its own dedicated section. This
may cause a sense of confusion during an initial reading. Given the complexity of the topic,
this is unavoidable and it will likely take multiple readings to fully understand how all of

the pieces of code interact with each other.

45

www.manaraa.com

5.1 main.py

As was discussed in 4.1, main.py is the first and last thread to execute in the system
software and it handles the creation of all of the other processes. Because of this, after a new
process as been created and tested, it needs to be registered as part of the system software
in main.py.

Before looking at the contents of main.py, it will be useful for the rest of the chapter
to discuss the basic folder structure of the code base. The top level directory is structured

as follows:
system_ software
config_ files
src
L main.py
test

Of all of the folders, src is the only python package, and it contains all of the source
code for the system software, including main.py. The src directory also acts as the common
root for all python modules, which effects how modules import each other. For example, if
a file needs to import the ABC_ Interface module, it would be done by starting at src and
traversing down the directory structure to the package where the ABC_ Interface file resides,

like so:

1 from src.process_interfaces import ABC_ Interface

This pattern is used extensively throughout the code base, and provides a convenient
way to find files and give programmers context to what the purpose of the module is based
on the package it belongs to. Additionally, all of the abstract base classes include the prefix
ABC__ in their name to make them easier to find as one of the best ways to learn how a
package is intended to function is to first read through any abstract base classes it contains.

The test directory contains all of the test code for the system software. Like src, it
also contains python packages, however it is not a package itself. Finally the config files
directory contains all of the configuration files that have been created for the system software.

The following is an example of main.py with only the message router and light engines

processes registered to run:

46

www.manaraa.com

2# main.py

4# configuration imports

5 from src.config import ConfigManager
6 from src.data_structs import Configlnterfaces # enum
7
84# process interfaces imports
9 from src.process_interfaces.hardware import LightEnginesInterface
10 from src.process_interfaces.controllers import MessageRouter
11 from src.webserver import setup, run
12
134# process messages imports
14 from src.data_structs.internal messages.hardware import
— ABC_ LightEngineMessage
15 from src.data_ structs.internal_ messages.controllers import
— ABC_ RouterMessage
16 from src.data_structs.internal_ messages import Shutdown
17
184# multiprocessing imports
19 from multiprocessing import Process, Queue
20 from threading import Thread
21
22
23 defaultConfigPath = ”/path/to/config/file/config.json”
24 cm = ConfigManager (defaultConfigPath) # config manager
25

26# input and output messages queues for each process

27 inQs = {}
28 outQs = {}
29
30

31# create the light engines process

47

www.manharaa.com

324# create input and output queues for the process

33 lightEnginesQueueln = Queue()

34 lightEnginesQueueOut = Queue ()

35# create the light engine process interface class

36 leif = LightEnginesInterface (lightEnginesQueueln , lightEnginesQueueOut)
37 LightEnginesConfig = cm. getConfig(Configlnterfaces.LightEngines)

38 leifProc = Process(

39 target=leif .run, # function to run as process

40 kwargs=LightEnginesConfig.getArguments (), # arguments for target
41 name=ABC_ LightEngineMessage . destination |,

42)

43 leifProc.start ()

44# add light engine message queues to global list of message queues

45 inQs[”light_engines”] = lightEnginesQueueOut

46 outQs[”light_engines”] = lightEnginesQueueln

47

48

49 7?7 Create and register additional processes here”””

50

51

524 create the message router process and start the web server

53 serverConfig , debug = cm.getConfig(Configlnterfaces.Router).
< getArguments ()

54# pass in the global list of message queues

55 router = MessageRouter (inQs, outQs)

56# start the message routing threads

57 Thread (

58 target=router .run,

59 kwargs={"configManager”: cm, ”“debug”: debug},
60 name=ABC_ RouterMessage. destination ,

61).start ()

62# setup and run Flask’s web server

48

www.manharaa.com

63 setup (router , serverConfig, cm)

64 run ()

65# when the web server is shut down by the user, have the message router
— shutdown the backend

66 router .shutdown ()

To summarize, main.py does the following in the following order:

1. Create the ConfigManager object by giving it the path to the configuration file. It
handles retrieving and validating configuration data from the configuration file and

will be discussed further in section 5.5.

2. Create the inQQs and outQs dictionaries to store all of the processes message queues in.
Ultimately these variables are used by the MessageRouter to correctly route messages
between processes. Aside from initializing and starting a new process, registering a new

process is as simple as adding the new process’s message queues to these dictionaries.

3. Create the light engines process. This includes creating the light engine message
queues, initializing the LightEnginesInterface, calling its run method as a process and
registering the message queues. The LightEnginesInterface will be the topic of further

discussion in section 5.3.1.

4. Create the MessageRouter and run its run method as a thread instead of a process, as

the current process is the message router process.

5. Lastly, setup Flask’s web server and tell it to run, which gives control of the console
to the web server. When the user stops the web server, the MessageRouter handles

shutting itself and the LightEnginesProcess down.

A behavior that isn’t clear by the simplified code above is that if there is no con-
figuration information in the configuration file for a process, then main.py can either not
start the process, start the process but disable its API in the web server or start the process
with a default configuration. This gives flexibility to how many computing resources the
backend is using while also keeping the frontend from sending invalid messages through the

MessageRouter.

49

www.manaraa.com

5.2 Messages

The message classes are arguably the most important classes in the entire system
software. They determine what tasks a process can and cannot do and ultimately provide
the interface that the web server API conforms to. Understanding how the message classes
are formatted is critical to understanding the rest of the code in the backend.

All of the message classes reside in the following locations:
system__software
[sre
L data_structs
L internal _messages
|__ controllers
r:print __job__messages.py
router messages.py
| hardware
r: light engine messages.py
axes_ messages.py
| ABC_ Message.py
L_system__messages.py

Internal messages are divided into two categories: controllers and hardware. Con-
trollers refer to processes that perform purely software based tasks, like the print job con-
troller, while hardware refers to processes that manage pieces of hardware. This is an orga-
nizational pattern that is used throughout the code base to help keep code that uses similar
patterns grouped together. While this may seem minor and even unnecessary, researchers
want to make use of preexisting code where possible and this abstraction makes it easier to
know where to look for preexisting code.

Notably the ABC_Message class is not part of either the controller or hardware
packages. The message classes are organized in a tiered system, with ABC Message being
inherited by another abstract base class that is specific for each process, and then all of the
messages for that process inherit from that process’s abstract base class. For example, if a
message called LightEnginelmage were to be created, it would have the following inheritance

hierarchy:

www.manaraa.com

4 import uuid

5

6 class ABC_ Message:

7 » 9

8 Parent class for all messages.

9

10 Child classes are intended to be initialized with all of the
— information that the message

11 needs to have. All attributes of the class should be class
— properties.

12

13 Attributes:

14 uuid - unique id for the message

15 type - customizable param for specifying the message type

16 sender - process that originally sent the process

17 destination - process the message is intended for

18 nr

19

20 _uuid = uuid.uuid4 () .hex

21 _type = None

22 _sender = None

23 ~destination = None

24

25 def __init__ (self):

26 R

27 Creates a uuid for the message

28 R

29 self.uuid = uuid.uuid4 () . hex

30

31 7?” Attribute getters and setters here”””

32

51

www.manharaa.com

35# light_engine_message.py

37 from src.data_structs.internal messages import ABC_ Message

38 # enums

39 from src.data_structs.enums import MessageType, PublisherType

40

41# inherits from ABC_Message

42 class ABC__LightEngineMessage (ABC_Message) :

43 777

44 Light Engine specific message parent class

45

46 Attributes:

47 light _engine (str) - name of the light engine that the message
— is intended for

48 destination (str) - hard coded value to indicate what process
< the CommandStatus message needs to be sent to. Also is
— used as the key for the message queue dictionaries that
— the MessageRouter uses.

49 nry

50

51 _light engine = None

52 destination = ”light__engines”

53

54 def __init__ (self):

55 super () .__init__ ()

56

57 77” Attribute getters and setters here”””

58

59

60# inherits from ABC_ LightEngineMessage

61 class LightEnginelmage (ABC_LightEngineMessage) :

52

www.manharaa.com

62 2799

63 Getter/Setter for the image of a light engine.

64

65 Attributes:

66 publisherType (PublisherType) - used with getters to determine

<~ how the driver should handle

67 returning the data

68 image (str) - path to where the image is saved on the disk

69 type (MessageType) - is the message a setter or a getter

70 nn

71

72 def __init__ (

73 self , light_engine, publisherType=PublisherType.none, set=False
— , image=None

74):

75 super () .__init__ ()

76 self.type = MessageType.set if set else MessageType.get

7 if isinstance (publisherType, PublisherType):

78 self . publisherType = publisherType

79 else:

80 raise ValueError(”publisherType must be a PublisherType

< enum”)

81 self.light_engine = light_engine

82 self .image = image

83 if set and (image is None):

84 raise ValueError(”Image cannot be set without valid image

— value”)

To expand the example, if a LightEnginelmage message is sent to the light engines
process by the web server, the Light EnginesInterface would respond with a CommandStatus
message after the LightEnginelmage message was processed. In the light engine process, the

sender and destination fields in the LightEnginelmage message would be swapped for the

53

www.manharaa.com

CommandStatus before sending it back to the web server along with the results from the

command. The code for the CommandStatus message is the following:

54

2# system__messages.py

4 from src.data_structs import ErrorState

5 from src.data_structs.internal messages import ABC_Message

6

7 class CommandStatus (ABC_Message) :

8 » 9

9 Execution status of a command recieved either from the API or

— another process

10

11 Atrributes:

12 state (ErrorState) - error code for the command

13 traceback (str) - if state is ErrorState.error, then the stack
< trace is placed here.

14 errorMsg (str) - if state is ErrorState.error, then the error
— string is placed here.

15 nr

16

17 ~returnVal = None

18 __state = ErrorState.none

19 _errorMsg = 77

20 __traceback = 77"

21

22 def __init__ (

23 self |

24 uuid ,

25 destination ,

26 returnVal=None,

erState .none

www.manharaa.com

29

28 errorMsg="",

29 traceback="",

30 E

31 nr

32 Creates a command status.

33

34 Parameters:

35 uuid (uuid.hex) - unique id of the original message that

— this object is responding to.

36 destination (str) - name of the process that the message is
— going to

37 returnVal (any) - any values that are returned by the
— function

38 errorState (ErrorState) - error code that resulted from the

<~ command

39 errorMsg (str) - error message
40 traceback (str) - traceback of the error
41 nry

42 super () .__init__ ()

43 self.type = "status”

44 self .uuid = uuid

45 self .returnVal = returnVal

46 self .state = errorState

47 self.destination = destination

48 self .errorMsg = errorMsg

49 self .traceback = traceback

50

51 77” Attribute getters and setters here”””

These patterns are repeated and customized for all of the processes, with each process

having its own file of message classes, such as axes messages.py for the axes process. The

55

www.manharaa.com

only exception to this is the system_messages.py file, which includes messages that are

intended to be created and consumed by multiple processes.

5.3 Process Interfaces

As was discussed in chapter 4, all processes use the same or, in the case of the message
router process, very similar thread architectures for handling messages. To facilitate this, all
of the processes inherit from a shared ABC__Interface class which provides all of the necessary
infrastructure and functionality for interprocess communication. All of the process interfaces

are grouped into a process_ interfaces package as follows:
system__software
[sre
L process__interfaces
| controllers
MessageRouter.py
PrintJobController.py
| hardware
AxesInterface.py
LightEnginesInterface.py
L_ ABC_ Interface.py

Of all of the process interfaces, the MessageRouter is the most unique and requires
several qualifiers. First, the MessageRouter is considered a controller, even though it is the
core of entire system software and is not intended to be modular in the same way that other
processes are. Second, is that the MessageRouter also inherits from ABC__Interface, however
it overrides many of the ABC Interface’s methods to add in message forwarding capabilities
alongside the logic for handling the web server.

Finally the overriding of the ABC_Interface methods that MessageRouter performs
is unique to it and modifications to the methods in the ABC Interface should not need to
be done for the majority of programming tasks in the system software. Further usage of the
ABC_ Interface class is best understood by looking at examples in the code. Below is an

example of how the LightEnginesInterface implements the ABC_ Interface:

5.3.1 Light Engines

56

www.manaraa.com

11
12
13

16
17
18
19
20
21

22

23

14)

24# LightEnginesInterface.py

5 import src.hardware.light_ engines as drivers

6 import traceback

7 from src.data_structs.internal messages import CommandStatus, Shutdown
8 from src.process_interfaces import ABC_ Interface

9 from src.data_structs import ErrorState

10 from src.data_structs.internal messages.hardware import (

LightEnginesNames ,
LightEnginelnitialize ,

99999

"770Other light engine messages here

15 from src.data_ structs import MessageType

class LightEnginesInterface (ABC_Interface):

99999

Interface for the process that controls all hardware light engines.
Documentation for undocumented functions can be found inside the
< Interface abstract base class.
Attributes:
light engines (dict): dictionary of all of the light engine
— classes. The keys are the name of the light engine and
— the

values are the light engine object.

99999

light engines = {} # currently loaded light engine drivers
where new drivers are registered

= [”DummyDriver”, "I2CLightEngine”]

57

www.manharaa.com

30

31 def __init__ (self, in_queue, out_queue):

32 no

33 Sets the input and output queues

34 Parameters:

35 in_queue (Queue): input queue from the flask process
36 out__queue (Queue): output queue from the flask process
37 nr

38 super () .__init__ (in_queue, out_queue)

39

40 def setupLightEngines(self, light engine_ drivers=][]):

41 no

42 Initializes all of the light engine and driver objects for the

— configuration

43 specified in the config file.

44 All light engine objects will be stored in self.light_ engines.
45 Parameters:

46 light _engine_drivers (dict): passed in configuration of the

— light engine

47 nr

48

49 for driverConfig in light_ engine_ drivers:

50 # get the light_engine_drivers class object

51 module = getattr(drivers, driverConfig.getClassName())

52 # use the driver to create the light engines object

53 initParams = driverConfig.getArguments ()

54 self.light engines[driverConfig.getName()] = module(**
— initParams)

55

56 def run(self, light engine drivers=][], debug=False):

57 nn

58

www.manharaa.com

59
60

61

62

63

64
65
66
67
68
69
70
71

def

Parameters:

light _engine_drivers (list) - configuration options for

— each driver and the light engines that are

attached to it. Each item in the list should be a

— dictionary with the config

params of a driver, with one of the keys containing a

— list of all the config

params for all the light engines that will be using the

< driver. See docs/Config Files.md
for more details.
self.setupLightEngines(light_engine_drivers)

self.processMessages ()

messageLogic(self , payload):
try:

provides the names of all of the light engine

— that are initialized
if isinstance(payload, LightEnginesNames):
self.outq.put(
CommandStatus (
payload . uuid ,

payload .sender ,

returnVal=list (self.light engines.keys()),

elif isinstance (payload, LightEnginelnitialize):
if payload.type = MessageType. get:
self .sendResponseMessage (
payload . uuid ,

payload .sender ,

59

drivers

www.manharaa.com

86 # function to execute and then send the result
— of with the CommandStatus

87 self.light_engines[payload.light_engine].
— get__initialized ,

88)

89 else:

90 self .sendResponseMessage (

91 payload . uuid ,

92 payload .sender ,

93 self.light_engines[payload.light_engine].
<~ set__initialized ,

94)

95

96 77?”Add other message handlers here”””

97

98 except Exception as e:

99 self.outq.put(

100 CommandStatus (

101 payload . uuid ,

102 payload .sender ,

103 errorState=ErrorState.error ,

104 errorMsg="{}: {}”.format(type(e). name , e.args),

105 traceback=traceback.print_exc(),

106)

107)

108

109 def shutdown(self):

110 super () .shutdown ()

111 print ("Light Engines Interface Shutdown”)

Any child class of ABC_ Interface is required to define four methods:

60

www.manharaa.com

e init - initializes the init method of the ABC Interface parent class sets

up the message handling threads.

o run - handles starting all of the threads that make the process function. Importantly
for hardware processes, this is where drivers should be created as allocation of hardware
resources, like a serial connection, are often tied to a specific process by the operating
system, and if those resources are created before the run method is called in a new
process, then the drivers may not be able to use those hardware resources. For this
reason the setupLightEngines method is called inside of the run method instead of in

init .

» messagelogic - defines the handler logic for each of the messages. Methods like
sendResponseMessage and self.outq.put belong to ABC__Interface and are used to send

CommandStatus messages.

o shutdown - handles all the necessary steps to make sure that the process shuts down

cleanly.

For controller process interfaces, once they define the appropriate methods there are
no further guidelines for how to structure the process. However hardware process interfaces
are expected to forward messages to the appropriate driver and patterns exist for how that
structure is formatted. For the LightEnginesInterface this is handled by the light engines
dictionary, the valid sub_ configs array and the ABC_LightEngineDriver.py file.

The light_engines dictionary stores all of the currently initialized drivers as a key-
value pair, with the key being a user assigned name that is defined in the configuration file
and passed into LightEnginesInterface by main.py, and the value is a light engine driver
object. Messages that are intended for a specific light engine all have a name field that needs
to match one of the keys in light engines to be valid. The names of all of the valid light
engine names can be retrieved by sending a LightEnginesName message to the process and
the LightEnginesInterface will return an array of all of the valid names.

The valid_sub_ configs is a list of all of the drivers that are registered with the light

engines process and, by extent, the entire system software. So long as the driver is registered

61

www.manaraa.com

in the src.hardware.light engines package’s ~ init_ .py file, python can use reflection to
translate the driver class’s name into an actual driver object.

All of this infrastructure in LightEnginesInterface, and for all hardware process in-
terfaces for that matter, only makes sense if all of the light engine drivers share a common
API for handling all of the light engine specific messages. The solution is to create an ab-
stract base class for light engine drivers that forces them to implement a common API. The
message classes for the light engines process are largely a reflection of what is in the abstract
base class. For the light engines process, all of the drivers must inherit from the following

class:

4 import abc

5 from threading import Lock

6 from functools import wraps

7 from src.data_ structs import Publisher, publisher, PublisherType
8

9

10 class ABC_LightEngineDriver (metaclass=abc.ABCMeta) :

11 nry

12 This class defines the minimum interface needed for a driver.

13 The purpose of a driver is:

14 1. Contain all of the objects necessary for direct communication
— with the hardware.

15 2. Initializing communication with the hardware.

16 3. Cleanly disconnecting and shutting down the hardware.

17 4. Keeping track of the initialized state variable.

18 5. Resetting the hardware driver

19 Attributes:

20 initialized (bool) - state variable to track if the software

< connected to the hardware

62

www.manaraa.com

21 state_lock (Lock) - for use when reading/writing state
— variables to keep the driver thread safe.
22 image_path_publisher (Publisher) - handles when to publish get
— requests to the image path
23 nry
24
25 _initialized = False
26 _state_lock = Lock()
27
28 @abc. abstractmethod
29 def __init__ (self , **kwargs):
30 R
31 Initializes the Light Engine object.
32 Returns:
33 none or error if invaild
34 nry
35 # create the publihser for the image path.
36 # the 1 indicates that for periodic requests it will return
37 # every 1 second. This can be customized by the child classes
38 self.image_ path_ publisher = Publisher (1)
39
40 def get_image(self , publisherType):
41 nr
42 Wrapper function for the _ get image method. Manages the
— publisher
43 for the image variable.
44
45 Parameters:
46 publisherType (PublisherType) - used by publisher method
47
48 Returns:
49 return image as a png

63

www.manharaa.com

50 nnn

51 return publisher (self.image_path_publisher, self._ get_image,
< publisherType)

52

53 @abc. abstractmethod

54 def get image(self):

55 nrr

56 Getter for the image

57

o8 Returns:

59 return image as a png

60 nrr

61 raise NotImplementedError

62

63 @abc. abstractmethod

64 def get initialized (self):

65 nrr

66 Getter for the initialized state

67 Returns:

68 self. initialized (bool): is the hardware connected

69 nrr

70 raise NotImplementedError

71

72 @abc. abstractmethod

73 def set initialized (self):

74 nrr

75 Setter for the initialized state

76 nrr

77 raise NotlmplementedError

78

79 @abc. abstractmethod

64

www.manharaa.com

81
82

83
84
85
86

2799

Resets the state of the driver / hardware to a pre-initialized

— state

2799

raise NotlmplementedError

Additional abstract methods here

Creating abstract base classes for drivers is a delicate process. In the case of the
ABC__LightEngineDriver class, it was created with a specific set of light engines in mind,
however there is no guarantee that future light engines will fit this definition well, with the
worst case scenario being the functionality of a new light engine being restricted by the
abstract base class. This is painful because updates to the driver abstract base class often
require minor changes to much of the backend, including the other light engine drivers. For
this reason a less is more approach to driver abstract base class design is best.

In the case of the ABC__LightEngineDriver the only variables the class has are ini-
tialized and state lock. initialized indicates if the driver has established communication
with the light engine and state_lock is a mutex object for keeping the driver thread safe.
state_lock is particularly important as the heavily multi-process and multi-threaded nature
of the system software make thread safety a serious potential problem. From the researcher’s
perspective, avoiding race conditions is one of the biggest challenges to writing new drivers
for the system software.

In contrast, one of the easiest parts of creating new drivers is adding in publish-
subscribe fuctionality. A separate Publisher class has been created to handle managing
pubisher requests, and a simple example of how it works can be seen from the code examples

forABC__LightEngineDriver and LightEngineDummyDriver.

4

5

from src.hardware.light_engines import ABC_ LightEngineDriver
from src.data structs import Publisher, publisher , PublisherType

65

www.manaraa.com

6# other imports here

7

8

9 class LightEngineDummyDriver (ABC_ LightEngineDriver):

10 nry

11 Dummy driver class to be used for testing purposes and as an
— example of what an actual driver

12 class may look like. It only controls one light engine.

13 Documentation for undocumented functions can be found inside the
— Driver abstract base class.

14 nry

15

16 def ___init__ (self):

17 # creates the publisher objects that are defined

18 # in the abstract base class

19 super () .__init__ ()

20

21 def _get_image(self):

22 nry

23 Gets the image of the light engine

24 nry

25 if not self.initialized:

26 raise ValueError(”cannot get image. Driver is not connected

< to the hardware.”)

27 return self.image_ path

28

29 def set_image(self, path):

30 R

31 Sets the image of the light engine

32

33 Since the image is never loaded onto a light engine and the

34 path to the so called image always stays the same, this

66

www.manharaa.com

35

36
37
38
39
40
41
42
43
44
45

function does nothing beside checking if it is wvalid to set the

— image

2799

image setting code

self .image_ path = path
self .image_path_publisher.setChangePublish ()

def reset_ driver(self):
self .image_ path_publisher.setChangePublish ()

other variables reset here

The two main components in the example are the publisher method and the Pub-
lisher class. The Publisher class provides queues for subscriber requests for a specific variable
and ensures that the requests are serviced in one of three ways: on change, immediately or
periodically. In the ABC_ LightEngineDriver example above, the Publisher variable im-
age path_publisher is used by the publisher method to delay when a call to the get image
method is returned. The method can either return immediately, wait until the image that
is being displayed on the light engine is changed, or return on a periodic timer, in this case
every second.

Integrating the Publisher class for any variable that is accessible by the API is a
matter of creating a Publisher object for that variable inside of the abstract base class and
creating a getter method for the variable that acts as a wrapper method for the actual
getter method that will be defined by the child class. This wrapper method calls the publish
method, which handles setting up the variable’s Publisher object for that particular getter
method call and calling the actual getter method. This emulates the behavior of a decorator
function which unfortunately could not be used here as decorated abstract methods do not
also decorate the child class’s implementation.

Finally the variable’s abstract getter method needs to include a variable for the

PublisherType enum that is necessary for the decorator to function. These changes also

67

www.manaraa.com

necessitate adding a PublisherType field to the variable’s message class and passing that
variable into the appropriate message handler in the process interface. The web server’s
API handler will also need to be updated to complete providing the combined MVC and

publisher-subscriber functionality that was discussed in 5.4.

5.3.2 Axes

Compared to the light engine process the axes process is almost identical except that
the API for handling axis messages have been placed in a separate class alongside the driver.

This difference can be seen in the structure of the hardware package:
system_ software

[sre
| hardware

axes
drivers
L ABC__AxisDriver.py
ABC__AxisShim.py

light engines

L ABC_ LightEngineDriver.py

Computationally speaking, the shim handles all of the preprocessing necessary to
create a message that the driver can then send to the stage controller. A shim then uses its
driver to send that message to the stage controller and translates any responses into a format
that can be sent back as part of a CommandStatus message. On top of handling all of the
minutia surrounding communicating with the stage controller the driver also maintains state
data that impacts all of the axes, such as if the driver is connected to the stage controller.

However shims can also have their own state data and determining if a state variable
should be part of the shims or the driver varies depending on the hardware. For example,
homing axes can be handled differently from controller to controller. Some controllers will
home all of the axes at once, making the homed state variable ideal for the driver, while
others allow for individual axes to be homed, necessitating that the homed variable be tied
to a shim. These kinds of design problems are compounded by the fact that multiple shims
can share a single driver.

One of these problems is how to enable the AxesInterface to create a set of shim

objectsythatyall.sharesa single driver. Unlike the LightEnginelnterface, the AxesInterface

68

www.manaraa.com

keeps track of the shims instead of the drivers. However letting a shim create the driver
makes it difficult to share that driver with subsequent shims, meaning that it is simpler to
create the driver first and then pass it in as a initializing parameter to the shims. But since
it would be messy for the AxesInterface to juggle the shims and a driver at the same time,
especially if there is any custom logic that needs to be ran during the initialization of the
shims and drivers, we are left with a chicken and egg style problem.

To side step this problem, the ABC__AxisDriver has a static abstract method, mean-
ing it can be run independent of a driver object, called createAxes that handles the creation
of the driver and shims and returns only the shims back to the AxesInterface. Below is
an example of how the AxesInterface uses the AxisDummyDriver’s createAxes function to

create dummy axes:

4 from src.hardware.axes.drivers import ABC_ AxisDriver

5 import src.hardware.axes as axes

6

7

8 class AxisDummyDriver (ABC_ AxisDriver) :

9 » 9

10 Dummy driver class to be used for testing purposes and as an
— example of what an actual driver

11 class may look like. It only controls one axis.

12

13 In this case, the homed state is part of the driver.

14

15 Documentation for undocumented functions can be found inside the
— Driver abstract base class.

16 nry

17

18 777 (0Other driver methods here”””

69

www.manaraa.com

19

20 @staticmethod

21 def createAxes(driverConfig={}, shims=][]):

22 nr

23 Given configuration parameters, this function creates a

— properly configured driver

24 and uses it to create properly configured axis objects.

25

26 This function can be called without creating an object first.
27

28 Parameters:

29 driverConfig (dict) - kwargs for DummyDriver. init ()
30 shims (list of AxisShimConfig) - configs for all of the

<~ axis associated with this driver.

31

32 Returns:

33 output (dict) - dictionary of all the axis objects of the
— format {axisName: axisObject}

34 nry

35 # create the driver

36 driver = AxisDummyDriver (**driverConfig)

37 output = {}

38 # create the shims

39 for axisConfig in shims:

40 # verify the axix is compatible with the driver

41 if axisConfig.getClassName () in AxisDummyDriver.validAxes:

42 module = getattr (axes, axisConfig.getClassName ())

43 kwargs = axisConfig.getArguments()

44 # add driver to input kwargs

45 kwargs[”driver”] = driver

46 output [axisConfig.getName ()] = module(**kwargs)

70

www.manharaa.com

48
49
50

51
52
53
54
55
56

58# AxesInterface.py

60 from src.process_interfaces import ABC_Interface

61 import src.hardware.axes.drivers as drivers

62
63
64
65
66
67

68
69
70

71
72
73
74
75

else:
raise ValueError(
"The axis {} is not a valid axis to use with the
< DummyDriver” . format (

axisConfig.getClassName ()

)

return output

class AxesInterface (ABC_Interface):

99999

Interface for the process that controls all hardware axes.

Documentation for undocumented functions can be found inside the

<« Interface abstract base class.

Attributes:
axisShims (dict): dictionary of all of the axis classes. The
— keys are the name of the axis and the

values are the axis object.

99999

def setupAxes(self, axisDrivers=[]):

9999 99

71

www.manharaa.com

76 Initializes all of the axis and driver objects for the

— configuration

7 specified in the config file.

78

79 All axis objects will be stored in self.axisShims.

80

81 Parameters:

82 axisDrivers (list of AxesDriverConfig): passed in

— configuration of the axis

83 nrr

84 # for each driver

85 for driverConfig in axisDrivers:

86 # get the driver class object

87 module = getattr(drivers, driverConfig.getClassName())
88 # use the driver to create the axes objects
89 config , shims = driverConfig.getArguments ()
90 axes = module. createAxes (config, shims)

91 # save them to AxesInterface.axes

92 for name, obj in axes.items():

93 self.axisShims [name] = obj

Overall, axes require more thought to implement compared to light engines. However

it is a useful design pattern that feasibly could be reused for other types of hardware.

5.3.3 Print job controller and print job file validator

Compared to the light engine and axes processes, the print job controller does not
make use of any abstract base classes beyond ABC_ Interface as the extra infrastructure
would only serve to complicate the print job controller. This approach means that if a 3D
printer’s hardware architecture changes significantly enough, such as adding an extra light
engine, the best way to adapt the print job controller would be to write a new controller.

While this may seem to violate the design goal of keeping the system software modular, print

72

www.manharaa.com

job controllers are functionally the most complicated pieces of code in the system software
and modularizing them to be agnostic of future changes in hardware is non-trivial.

Part of what makes the print job controller complicated is its reliance on a state
machine. While the state machine model does an excellent job describing a 3D printer’s
behavior during a print job in an environment where external messages can be received
at any time, it is incredibly difficult to get an intuitive understanding for what the state
machine looks like by only looking at the code. For this reason, figure 5.1 has been provided

as a map to the print job controller code.

HARDWARE NOT INITIALIZED NO NEXT MESSAGE
HARDWARE
INITIALIZED
AND NEXT
START MESSAGE

MESSAGE

STOP MESSAGE

NO NEXT MESSAGE
GO TOA sToP BUILD

AND STOP MESSAGE STAGETO
BOTTOM

STOP NEXT
MESSAGE MESSAGE

NO NEXT MESSAGE

PAUSE — PAUSE MESSAGE ~-

PAUSE MESSAGE AND
LAST STATE EXPOSE IMAGES

STOP PAUSE MESSAGE
MESSAGE

PAUSE MESSAGE
AND LAST STATE —
MOVE BUILD PLATFORM

MOVE
BUILD
PLATFORM

NEXT
MESSAGE

NO PAUSE
MESSAGE

NO PAUSE MESSAGE
AND
NOT LAST LAYER

Figure 5.1: State machine for the print job controller process. External messages that can
change the state and that can be received at any time are Start, Stop, Next, and Pause.

73

www.manharaa.com

Integral to the functionality of the state machine is how the relevant information for
each layer of a print gets to the expose images and move build platform states. Print job
files are sent to the print job controller via an upload message and conform to the following

file structure:
static/uploads
L print__job
slices
[0000.png
print__settings.json

print_ setting.json contains all of the information for the position of the build stage
and the image to display on each layer, with the slices folder containing all of the images
that make up the 3D print. To date, several versions of the print_settings.json file have
been created and it is reasonable to assume that the format for print job files will continue
to evolve as changes in 3D printer hardware architecture are made. To accommodate this,
a separate printjob package was created to make the reading and validating of different
print__settings.json files easier and more modular. The printjob package has its own code
base and has been created to be installed with pip.

From the print job controller’s perspective, using the printjob package is straightfor-

4 from printjob import getPrintJob

5 from src.process_interfaces import ABC_ Interface
6
7 class PrintJobController (ABC_ Interface):

8

9 def handleStartMessage (self):

10 R

11 Handles state changes when a start message is received
12

13 Passes errors back to the caller function

74

www.manaraa.com

14 nry

15

16 with self. stateLock:

17 self.printjob = getPrintJob (

18 self.printJobFilePath , printJobSettingsFileName="

— print_settings.json”,

19)

20

21

22 def stateMachine (self):

23 n

24 State machine thread that drives a print job

25 nn

26

27 # other states

28

29 elif state = State.move_ bp:

30 # stop if out of layers

31 if self.currentLayerNum > self.printjob.getNumberOfLayers ()
—

32 with self._stateLock:

33 self.currentState = State.move_bp_top

34 continue

35 # move build platform for the next layer

36 self.currentLayer = self.printjob.getLayer(self.
< currentLayerNum)

37 self.currentLayerNum += 1

38 self . updateBuildPlatformPosition ()

39 # update to the expose state

40 with self. stateLock:

41 # check if paused

42 if self.currentState != State.pause:

75

www.manharaa.com

43 self.currentState = State.expose
44 else:

45 self .nextState = State.expose

46 elif state = State.expose:

47 # update state to finish the print job

48 self.performExposures ()

49 with self. stateLock:

50 # check if paused

51 if self.currentState != State.pause:
52 self.currentState = State.move_bp
53 else:

54 self .nextState = State.move bp

55

56 def updateBuildPlatformPosition(self):

57 R

58 Moves the build platform based on the config in the layer
59 nr

60 # wait before moving bp

61 time.sleep (self.currentLayer.init_ wait)

62 self .elapsedTime 4= self.currentLayer.init_wait
63 # move up

64 upDistance = self.currentLayer.distance_up

65 self . moveAxis(upDistance, MoveMode. relative)
66 # wait time at top

67 time.sleep (self.currentLayer.up_wait)

68 self .elapsedTime 4= self.currentLayer.up_ wait
69 # move to the thickness height

70 downDistance = (

71 self.currentLayer.thickness - upDistance
72)

73 self . moveAxis(downDistance, MoveMode. relative)
74 # wait before moving on

76

www.manharaa.com

75 time.sleep (self.currentLayer. final wait)

76 self.elapsedTime 4= self.currentLayer.final wait

77

78 def performExposures(self):

79 R

80 Helper function to do all of the exposures on a single layer.
81 nry

82 for exposure in self.currentLayer.exposures:

83 # set the light engine settings

84 if exposure.power != self.power:

85 self .power = exposure.power

86 self .sendCommand (

87 LightEngineBrightness (

88 self . lightEngineName , set=True, brightness=self

— .power

89)

90)

91 # wait before exposure

92 time. sleep (exposure.wait_before)

93 self.elapsedTime 4+= exposure.wait_before

94 # set the image

95 self .sendCommand (

96 LightEnginelmage (

97 self .lightEngineName

98 set=True,

99 image=self.printJobFilePath + ”"slices/” + exposure.
— 1image,

100)

101)

102 # expose the image

103 self .sendCommand (

7

www.manharaa.com

104 LightEnginePerformExposure (self .lightEngineName ,
<> exposure.exposure_time)

105)

106 self .elapsedTime += exposure.exposure_ time

107 # wait after exposure

108 time.sleep (exposure.wait_after)

109 self .elapsedTime 4+= exposure.wait_after

Functionally, the printjob package does the following in the code above:

1. The call to getPrintJob passes in the location of the print job and the name of the
settings file. The function then reads in the settings file and determines which settings

file version it conforms to.

2. Each settings file version has its own PrintJob class which is responsible for validating,
parsing and creating easy to access data structures for the print job controller. The
getPrintJob function creates the appropriate PrintJob object and assuming that the
settings file is valid, the function will return a PrintJob object. (Note: the code for

handling invalid settings files is not shown in the code sample).

3. For each layer of the print, the PrintJob object will return a Layer object that contains
all of the settings for a particular layer of the print job. This includes information about
the positioning of the build platform and an array of Image objects that contain the

settings for each image that will be exposed on that layer.

While the print job controller is not modular, the printjob package is modular and
can help in adapting the print job controller to different 3D printer hardware architectures
without having to change the print job controller. Like the rest of the system software, it
conforms to the create, test and register philosophy and structurally is similar to the system

software’s code base:
print__job_ validator
schemas

Lvl.json
src

78

www.manaraa.com

| data_structs
r: Layer.py
Exposures.py
|_print__jobs
helper_ functions.py
ABC_ PrintJob.py
PrintJobV1.py

L test
L test_ PrintJobV1.py

Adding new print job validators requires defining a new JSON schema file that the
print_settings.json file must conform to, which is shown in the directory structure above by
vl.json. Each JSON schema file that is defined has an accompanying print job class that
uses the JSON schema file to validate settings files and that takes the JSON data and puts
it into a format that is more easily accessible to the print job controller. The basis for all
print job classes is provided by theABC PrintJob abstract base class, which the print job
class PrintJobV1 from the example above inherits from.

New Layer and Exposures data structs can be defined or preexisting ones can be
modified to work with the new schema and will be used as the data structures that the print
job controller uses to get the layer and exposure settings and image data for each layer.
Tests are required to validate that the new print job class and data structures are working
correctly, and finally, the new print job handler needs to be registered with the getPrintJob
function that is defined in helper_functions.py and provided with a way to distinguish the

new schema from the other schemas, usually through the use of a version field in the schema.

5.4 Web server

While the web server requires a number of steps to set up, the actual code for creating
and registering new API handlers with flask-restplus is relatively straightforward. Struc-

turally the file system uses the following pattern:
system_ software

L SIC

Lwebiserver
L api
controllers
Lprint Jobs. Print job API handlers here
hardware

79

www.manaraa.com

iiaxes .. Axes API handlers here
light engines......................... Light Engine API handlers here
L LightEngineBrightness.py
dist
L static. .. webpacked files, like the
ones in this directory, are
given a unique hash for a
name every time the fron-
tend is built
| abc.css
L XyZz.JS
__index.html webpacked Vue frontend
__frontend
L routes.py
__server.py

The flask-restplus API handlers are found under the webserver/api directory with
each handler, like LightEngineBrightness.py, usually corresponding directly to one of the
messaging classes. How these classes are coded is best explained by flask-restplus’s doc-
umentation [14] and by looking at the format of other API handlers, but registering new

handlers requires modifying the setup process for Flask’s web server as follows:

24 server.py

4 from flask import Flask, render_template, Response, request, Blueprint
5from flask restplus import Api, Resource

6 from src.webserver import flaskapp as app # Flask object

7

8cm = None # config manager

9 config = None # flask specific config

10 router = None # message router

11 tempDir = None

12

13 def initAPI(): # called during setup
14 79N

80

www.manharaa.com

15 Initializes the API.

16

17 Must be called after the outgoing Queue object has been created.
18 nn

19 from src.webserver.api import api

20

21 apiBlueprint = Blueprint(”api”, __ name , url_ prefix="/api”)
22 # initialize the apis

23 initLightEnginesAPI(api)

24

25 # other process apis here

26

27 # add api to the blueprint
28 api.init_app(apiBlueprint)
29 # register the api blueprint

30 app.register__blueprint (apiBlueprint)

31

32 def initLightEnginesAPI(api):

33 nry

34 Initializes all of the api endpoints for the light engines module
35

36 Parameters:

37 api (API) - flask_ restplus object that handles the api

<~ endpoints

38 nr

39 try:

40 # check if the light engines has been configured. If not, then
— don’t register its api endpoints

41 global cm # configuration manager

42 cm. getConfig (Configlnterfaces.LightEngines)

43 except Exception as e:

81

www.manharaa.com

45
46
47
48

49
50
51

return

import API handlers here
from src.webserver.api.hardware.light_ engines import

< lightEnginesBrightness

add other API handlers to flask here

api.add_namespace(lightEnginesBrightness)

Aside from the API handlers, the web server also can serve a frontend web page.
The specifics of how this is done is going to vary depending on the frontend, but for the
Vue frontend there are several noteworthy features. Foremost is that the webserver/fron-
tend directory is actually a separate git repository that is a submodule of the main system
software git repository which makes it convenient to develop the frontend independently of
the backend. The Vue frontend also makes use of a technology known as webpack which
takes a complex nodejs project and complies it down to minified, obfuscated javascript and
CSS files and a single index.html file. When the Vue project is built using npm or yarn, it
saves the built files in webserver/dist and webserver /dist/static directories where flask can

serve the files from.

5.5 Configuration Management System

Thus far the configuration manager has been referenced several times in the code
examples above and, as was discussed in section 5.1, it determines which pieces of the
modular system software run and how they run when the backend is started. Simply put,
the configuration system takes the modular features in the system software and makes them
accessible to people other than programmers by allowing all of the modular aspects of the
system software to be represented in a configuration file. This can been seen by looking at

an actual configuration file:

24# dummy_ config. json

82

www.manaraa.com

11

"General 7: {
"name”: "test file”,
"comment ”: “dummy config file for testing?”,

"debug-all”: true
I
"Axes”: {

"drivers”: |

"name”: DummyX”

"class ”: 7AxisDummyDriver”

"configuration ”: {
7acceleration”: 1,
"deceleration”: 1,

"velocity ”: 1,
"maxPos”: 5,

"minPos”: 2

"name”: "X,
7class ”: 7 AxisDummyShim” |
"calibratedPosition”: 5,
"configuration”: {}
}
]
¥
]
}s
"LightEngines ”: {
83

www.manharaa.com

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63 }

"name”: "DummyA” ,

7class ”: ”LightEngineDummyDriver”

"configuration ”: {
7image_ width”: 30,
"image_height”: 50,
"brightness__max”: 1000,

"brightness_min”: 0,
"refresh_rate_ max”: 50,
"refresh rate min”: 0
}
¥
]
’
"Router”: {
"server configuration”: {
"host”: 70.0.0.07,
"port”: 5000,
"debug”: true
}
I
"PrintJob”: {
"light engine name”: "DummyA”,
"build platform axis name”: ”X”,
"build platform axis top position”: 5,
"build platform axis bottom position”: 0,
"build platform axis swap min/max”: false
}

Each of the processes have their own section that contains the configuration infor-

mation for their process interface classes and all of the classes that run in the process, like

84

www.manharaa.com

the drivers for the light engines process. The configuration fields roughly represent the ar-
guments and key word arguments that each class accepts when it is initialized. Each of the
process interface classes expects the configuration data for all of the class objects it creates
at run time to be passed into its run method when the process is started. It will then use the
configuration data to create those class objects during setup. This approach requires that
the config package contain a rough reflection of the class structure of the backend, which is
one of two reasons why structurally the config package is the most complex package in the
entire system software.

The other reason is that there are actually two inheritance and registration hierarchies
in the package: one for the python code and one for the JSON schemas. Conveniently the
files in these hierarchies mirror each other so that every python class is paired with its own
JSON schema file. However the way the python code handles inheritance and registration
differs from the way JSON schemas do it, which is that registration and inheritance are seen
as the same thing. To better understand this, it is best to start by looking at an simple

example where there is no inheritance:

JSON Schema
Python Registration Structure Registration Structure Configuration File

ConfigManager "PrintJob": {

"light engine name": "DummyA",
"build platform axis name": "X",
"build platform axis top position": 5,

. "build platform axis bottom position": O,
PrintJobConfig config_schema "build platform axis swap min/max": false

Figure 5.2: Simple relationship diagram of the print job process’s configuration handler, its
JSON schema and a configuration file.

As seen in Figure 5.2, the PrintJobConfig class acts as a configuration handler that
parses all of the red text in the configuration file and translates it into a format that the

an accept into its run method. The config schema.json file is used

85

www.manharaa.com

to define the format of the print job controller’s configuration options and is used by the

ConfigManager to validate that a provided configuration file conforms to the schema. It is

also used as the root JSON schema file that all other JSON schema files must be referenced

by to be considered part of the configuration file schema. In this case, the PrintJobController

has no classes that it needs to pass configuration information to, therefore the schema for

all of the print job controller’s configuration data can be contained in config schema.json.

Processes that need to pass configuration information to other classes, like the axes

process, require substantially more infrastructure. As demonstrated in Figure 5.3, the Ax-

esInterfaceConfig configuration handler utilizes other configuration handlers to parse apart

the configuration data for the modular components in the axes process. This allows for the

schema to adapt to the specific configuration needs of every new axis driver and/or shim.

Python Registration Structure

ConfigManager

AxeslInterfaceConfig

ABC_AxesDriverConfig

AxisDummyDriverConfig

ABC_AxisShimConfig

AxisDummyShimConfig

JSON Schema Registration Structure

config_schema

axes_driver_schema

axes_dummy_driver

axes_shim_schema

axes_dummy_shim

Configuration File

"Axes": {

"drivers": [
{
"name"; "DummyX",
"class": "AxisDummyDriver",
"configuration": {
"acceleration": 1,
"deceleration": 1,
"velocity": 1,
"maxPos": 5,
"minPos": 2
h
"axes": [
{
"name": "X,
"class": "AxisDummyShim",
"calibratedPosition": 5,
"configuration": {
"debug": false

Figure 5.3: Relationship diagram of the configuration management system for the axes

process.

The arrows indicate what file the originating file or object registers itself

with. Not shown in the diagram is the python inheritance structure but for reference,
ABC_ AxesDriverConfig is the parent of AxisDummyDriverConfig and all other axis drivers,

86

and ABC AxisShimConfig is the parent of AxisDummyShimConfig and all other axis shims.

www.manharaa.com

There are several other noteworthy features of this architecture. One is that the
abstract base classes handle configuration data that is common between all drivers or shims,
like what name they should have or what class to use. Child classes of these abstract base
classes contain all of the specific configuration information each driver or shim needs, such as
what baud rate to run at. Conveniently, the light engines process shares the same structure,
just with all of the references to the shims removed.

It is also worth noting that the AxisDummyShimConfig is not registered with the
AxisDummyDriverConfig as might be intuitively expected. This is because of the initial-
ization gymnastics that were discussed in section 5.3.2 and the configuration management
system has been forced to reflect this. Finally while the ConfigManager mainly reads in and
processes configuration files, it also has the ability to write back to configuration files. This
is incredibly useful for saving settings that need to persist after restarting the backend, like
for what the calibrated position of a particular axis is so that it can be sent back to that
position after it has been homed.

While it would be useful to show a full example of how a driver would be integrated
into the configuration manager, the size of that code sample is prohibited and thus has
been placed in the appendix. However it is worth noting that the JSON schema code in
the example is best understood in the context of its documentation [15]. Unfortunately this
highlights an issue with the current configuration manager of the system software.

As configuration files are likely to be subjected to the most change by researchers
who may not also be programmers, having the rules for the configuration files integrated
into the code base in the JSON schema format has a significant negative impact on the how
easy it is to create new configuration files. Thankfully there are tools that can take a JSON
schema file and produce user friendly documentation in a variety of formats. Specifically
the bootprint [16] npm package will return the documentation in a web friendly format that
easily could be integrated into the frontend. Unfortunately due limitations in the web server
it has proven difficult to serve this documentation page alongside the Vue frontend. This is

yet another area that could would benefit from a re-architecting of the web server.

87

www.manaraa.com

5.6 Tests

The heavily multi threaded nature of the system software makes testing changes or
new additions to the code base surprisingly difficult using traditional approaches to develop-
ment and debugging. For this reason, unit tests have become the preferred development tool
for validating that each of the modular pieces of the code are running correctly. They also
have proven invaluable during the prototyping phase of new architectures by quickly uncov-
ering where changes have broken the interfaces between process or the interface between the
front and backend.

To aid in testing, dummy light engine and axis drivers, axis shims and configuration
files have been created to mimic the behavior of real drivers, shims and configuration files.
They also provide an excellent prototyping environment that is invaluable when designing
the interface for a new hardware process.

The tests have been divided into three categories: driver, process and API that are

organized in the following directory structure:
system_ software

L test

hardware tests
interface unit tests

api

5.6.1 Driver tests

Driver tests are intended to validate both if a hardware driver/ shim is working
correctly and can be used to verify hardware integrity. Unlike the process and API tests,
they do not make use of Python’s built in unittest package. Instead they function as a simple
script that requires the user to validate that the actions the script is preforming are actually

being executed on the hardware. A simple example is as follows:

4 from src.hardware.axes.drivers import GrblDriver

5 from src.hardware.axes import GrblAxisShim

88

www.manaraa.com

6 from src.data_structs import MoveMode

7

84# create the drivers

9 driver = GrblDriver (numOfAxes=1)

10 axisZ = GrblAxisShim (driver=driver , grblAxisName="7Z")
11 axisX = GrblAxisShim (driver=driver , grblAxisName="X")
12 axisZ.initialize ()

13 axisZ .home ()

14 print (”Current Position: 7, axisZ.getPosition())

15

16 print (”Moving the printer”)

17 axisZ .setPosition (-5.0, MoveMode. absolute)

18 axisX .setPosition (-1.0, MoveMode. absolute)

kb

19 print (”Current Position - Z: 7, axisZ.getPosition())

20 print (”Current Position - X: 7, axisX.getPosition())

5.6.2 Processes

Process tests focus on testing a single process interface. These tests work by creating

a process, similar to how main.py works, and then sending it messages and monitoring the

responses that it gives. A dummy configuration file is used to create the process and for

hardware processes, the configuration file specifies that it load dummy drivers and/or shims.

This is all done with the unittest package and it creates unit tests that look like the following:

24 test_MessageRouter.py

4 import unittest

5 from threading import Thread
6 import time

7 import os

8 from multiprocessing import Queue, Process

89

www.manharaa.com

9 from src.config import ConfigManager

10 from src.process_interfaces.controllers

11 from src.data_structs.internal messages
12 Shutdown ,

13 CommandStatus,

14)

15 from src.data_structs.internal messages.

— ABC_ AxisMessage

16 from src.data_structs. internal__messages.

— SaveCalibratedPositionToConfig
17
18

19 class TestMessageRouter (unittest . TestCase):

20 no

21 Class for testing the MessageRouter controller.

22

23 Imitates two processes talking to each other through the
— MessageRouter.

24 non

25

26 dummyPath = (

27 os.path.abspath(os.path.dirname(__ file))

28 +7/../../../ config_files/dummy_ config.json”

29)

30 wait = 0.1

31

32 def setUp(self):

33 nrr

34 Creates a MessageRouter and the message queues for sending test

— messages to it.

35 9999 99

90

import MessageRouter

import (

hardware import AxesNames,

controllers import

www.manharaa.com

37
38
39
40
41
42
43
44
45

46
47
48
49
50
o1
52
53
o4
55
56
o7
58
59
60
61
62
63
64

65
66

def

def

self.outq = {}

self.inq [ABC_ AxisMessage. destination] = Queue()
self.outq [ABC_AxisMessage. destination] = Queue()
self.inq[”proc”] = Queue()

self.outq[”proc”] = Queue()

self .cm = ConfigManager (self .dummyPath)
self.router = MessageRouter (self.inq, self.outq)

Thread (

i

target=self.router.run, kwargs={"configManager”:

< debug”: True}
).start ()

tearDown (self):

999999

Shutdown the MessageRouter

self .router.shutdown ()

for key, value in self.outq.items():
payload = value.get(timeout=0.1)

self.assertIsInstance (payload, Shutdown)

test__sendMessage (self):

277N

Sends a basic message from one process to the other.

9999 99

msg = AxesNames ()
send a message to the axes

self.inq[”proc”]. put(msg)

payload = self.outq[ABC_AxisMessage. destination]. get (timeout=

— self.wait)
check if we received the message from the axes

self . assertIsInstance (payload, AxesNames)

91

self.cm, 7

www.manharaa.com

67 # send a CommandStatus back to the proc

68 self.inq[ABC_AxisMessage. destination |. put(

69 CommandStatus (payload .uuid, payload.sender)

70)

71 payload = self.outq[”proc”]. get (timeout=self.wait)
72 # check if proc got the message

73 self.assertIsInstance (payload, CommandStatus)

74 self . assertEqual (msg.uuid, payload.uuid)

75

76 # more tests here

Running the tests requires that the system software has been initialized once before
and that the current terminal session has the python virtual environment currently sourced.

Once those conditions are satisfied, tests can be run with the command:

1% python -m unittest path/to/test/test_mytest.py

For further detail on the unittest package and its command line options refer the

package’s documentation [17].

5.6.3 API

API tests test the end-to-end functionality of the backend, from the web server API
handlers down to the dummy drivers. They function by sending HTTP requests to the API
endpoints and validate the responses from the backend. In order for API tests to run, an
instance of the web server must already be running on the localhost. Aside from this, the

API unit tests also use the unittest package and follow a similar testing methodology.

5.7 Final thoughts

Taken as a whole, the system software’s code base is very complex. However the
modular design helps breaks the complexity down into smaller and more manageable pieces.

Each of these pieces are built on top of patterns that significantly reduce the mental load

92

www.manaraa.com

required to solve problems in the software. But as useful as it is to know these patterns,

knowing when and where to use them during development requires a different set of patterns.

93

www.manharaa.com

CHAPTER 6. DEVELOPMENT PATTERNS

Given the complexity of the system software, determining a workflow that is efficent
and effective is important to keeping the software easy to use. This chapter will provide an
overview of what files need to be changed, when they need to be changed and how to approach
designing those changes for the most common tasks that researchers will undertake in the
code base. It also is the simplest explanation of how the create, test and register philosophy
has been implemented in the system software and provides a framework for asking intelligent
questions and making informed design decisions about the code base, even to those who are

not familiar with the code.

6.1 Adding hardware

Hardware is constantly being added, removed and modified on the 3D printers, which
means that changes to the drivers will be one of the most common tasks that will need to
be performed. The main variable that determines how much work needs to be done is if
an interface for the type of hardware that is being added has already been created. For
example, adding a new light engine to the system software is a relatively easy task as the
light engines process already has a defined API for how to control a light engine, and adding
the new hardware only involves creating, testing and registering a new driver that conforms
to that interface. However if a new type of hardware, like a strain gauge, was added to the
3D printer, an entirely new API and strain gauge process would need to be created before
the strain gauge driver could be added to the system, not to mention changes that may need
to be made to the print job controller in order to take advantage of the new hardware.

Generally speaking, the difficulty of a task is directly related to how much of the
creation process involves writing registration code. This is because the more registration code

that needs to be written, the more time and energy it will take to design the infrastructure

94

www.manaraa.com

of everything that can be registered into that point of the system software. And with more
infrastructure comes a more complex system that will take more time to fully test.
Thankfully the structure of the system software naturally produces patterns that
can be replicated by subsequent tasks, making it easier to create registration code. These
patterns are general enough that they cover the most common development tasks that can
be done in the system software, even for hardware that will be added in the future. These

patterns are the topic of discussion for the upcoming sections.

6.1.1 Pattern 1: creating a driver for an existing interface

The following steps make up the general pattern for adding a new driver that already

has an interface defined for that hardware type:

1. Write a driver that inherits from the driver abstract base class and implement the
interface. Depending on how the process interface is setup, this step may include
creating a shim and the logic that registers the driver to all of its shims. The shim will

also inherit from the shim abstract base class.

2. Write a hardware test script for the new driver and its shims as appropriate. Make

sure that all of the interfaces have the desired effect on the hardware.
3. Register the new driver/shims with the process interface.
4. Create a JSON schema file for the driver/shims.
5. Register the new JSON schema file(s) with their appropriate driver/shim JSON schema.
6. Create a configuration handler for the new driver and shim JSON schemas.
7. Register the new configuration handler(s) with their appropriate abstract base class.

8. Write a configuration file and test that the new driver/shims can be correctly controlled
by the frontend or the API handlers. Debug as needed and update the hardware test

script as appropriate.

95

www.manaraa.com

Of all of the patterns, this one requires the least work as it has little to no creation
of registration code. If a hypothetical new light engine driver were to be added to the light
engines process, it would start with defining a new light engine driver class that inherits from
ABC_ LightEngineDriver and that would be located in src/hardware/light_engines. Once
the driver and all of its abstract methods are defined, a new hardware test script can be
created in test/hardware_tests/light_ tests/.

Next all of the configuration code needs to be defined for the new driver before it
can be used in the system software. A new JSON schema file would be created in sr-
c¢/config/schema/light _engines/ and a reference the new schema file would be placed in
the light engine schema.json file. Then a new configuration handler would be created
that inherited from ABC_ LightEngineDriverConfig and placed in src/config/hardware/-
light engines/light engine drivers/. Finally the new configuration handler would be reg-
istered in LightEnginesInterfaceConfig.

A new axis driver would follow a very similar pattern to the light engine driver, but
with the added complexity of the shims. The process of creating shims and their shared driver
technically counts as registration code and is handled by the abstract method createAxes that
is defined as part of the ABC__AxisDriver class. Adding the shims to the configuration code
is similar to the drivers. Create a JSON schema, register it to the axis_shim schema.json
file, create a configuration handler that inherits from ABC__ AxisShimConfig and register it
with the ABC_ AxisDriverConfig class. More information on the registration structure of

the axis process can be found in section 5.5.

6.1.2 Pattern 2: creating a new hardware interface

Adding a new hardware interface will use the following pattern:
1. Design an interface.
2. Create the messaging classes.
3. Create the abstract base class for the driver.

4. Create a dummy driver.

96

www.manaraa.com

5. Create the process interface.
6. Register the dummy driver with the process interface.
7. Create the configuration handlers for the process interface and the dummy driver.
8. Write tests for the new process interface.
9. Register the new process interface in main.py.
10. Create the API handlers for the web server.
11. Register the API handlers with the web server.
12. Write tests for the API handlers.

13. Add the new hardware functionality to the print job controller or any other relevant

processes and test that the changes work.
14. Test run a print job with the new hardware and debug as needed.

This pattern requires significantly more work, starting with designing the interface.
For any new process interface, designing the interface is both the most important and often
the hardest part of the process, as the interface determines how the messaging classes, API
handlers, process interface message handler method and the abstract base class and the
drivers, both dummy and real, are coded. Without accounting for drivers, this accounts for
over 3000 lines of code apiece for both the light engines and axes processes. With so much
code depending on the interface, making major mistakes during the design of the interface
can be time consuming to correct.

There are two tactics that can help minimize design errors in the hardware interface.
First is to properly research the capabilities of the hardware that is being added. This can
include creating a prototype driver to use for experimenting with the capabilities of the
hardware. It also should involve researching other models of the hardware and seeing what
common features they have, as the design of the interface should strive to be as generic as

possible.

97

www.manaraa.com

Secondly, one of the best ways to figure out what API handlers will be required is
to design the user interface for controlling the hardware before writing any code on the
backend. This can be done initially with rough sketches, however Vue and Vuetify excel at
creating quick, high quality, non-functional user interfaces. Generally speaking, creating a
user interface using the same technology that runs the frontend will always provide more
information about exactly what information from the backend it will take to drive each of
the user interface components.

If hypothetically a strain gauge were to be added to the 3D printer, it would require a
new process and process interface to be created. The beginnings of the design process should
include researching the hardware by writing a prototype driver, which could be converted to
an actual driver once the driver abstract base class is created. It also should include creating
a prototype user interface, which for the strain gauge may include the current value the
sensor reading, an on/off switch and possibly some sort of calibration functionality. At the
end of this process there should be a list of data that needs to be readable from the backend
and commands that must be supported which together makes up the hardware interface.

Next the messaging classes must be created, which will be placed in a file src/-
data_ structs/internal messages/hardware/strain_gauge messages.py. Then the driver ab-
stract base class needs to be defined, preferably alongside a dummy driver to enable testing
as soon as possible. At this point the strain gauge’s hardware interface is defined and only
the API handlers and abstract base classes for the configuration handlers need to be defined
before the remaining steps conform to pattern 1.

Creating and registering the API handlers is done in src/webserver/api/hardware /s-
train gauges/ and the API tests will need to be created in test/api/hardware/. Finally
configuration handlers will need to be created for the strain gauge process interface along-
side a driver abstract base class that covers all of the common configuration options between
strain gauges. They will need to be registered to each other and the process interface config-
uration handler will need to be registered to the ConfigManager. A new JSON schema entry
will need to be added to the config schema.json file for the process interface and a separate
JSON schema file will need to be created for the driver abstract base class and registered to

the config schema.json.

98

www.manaraa.com

6.1.3 Pattern 3: adding new controller interfaces

Adding new controllers shares many of the same steps as adding a new hardware
interface, but with fewer restrictions. This is a good thing as it gives controllers a tremendous
amount of flexibility in what kinds of tasks they are able to perform, but it is also a bad
thing in that this can make the design process much more difficult and involved as there
are few patterns to guide development. The generalized steps for creating a new controller

interface is the following:

1. Design an interface.
2. Create the messaging classes.
3. Create and register any classes that sit behind the controller’s process interface class.
4. Create the process interface.
5. Create the configuration handlers for the process interface.
6. Write tests for the new process interface.
7. Register the new process interface in main.py.
8. Create the API handlers for the web server.
9. Register the API handlers with the web server.
10. Write tests for the API handlers.

11. Integrate the new controller into any other relevant processes and test that the changes

work.

12. Test run a print job with the new controller and debug as needed.

Once again, designing the interface is the most challenging step. Just as with the
new hardware interface, prototyping the user interface before writing any of the backend
code is tremendously helpful. However once an interface has been decided upon, finding and

determining the.edge.case.behavior for various parts of the software can be tricky. To help

99

www.manaraa.com

GUI Elements State
Idle | Start Leveling | Leveling | Wait | Printing | Pause
Upload Btn v
Start/Pause Btn v v v
Stop Btn v v v v v
Begin Printing Btn v
Image N/A N/A N/A | N/A v v
Number of Layers v v v v v
Current Layer Number N/A N/A | N/A v v
Run time v v v v v
Elapsed time N/A N/A | N/A v v
Start modal v
Leveling modal v

Table 6.1: Table used to find all of the edge cases in the GUI components for the print job
controller web UI.

find these edge cases, creating a case table is essential. For example, during the creation
of the print job controller, the table below was created to determine what user interface
elements needed to be enabled or disabled during different states in the print job controller’s
state machine:

Case tables are an excellent way to rigorously define the behavior of an interface and
are an incredibly useful design tool, even for new hardware interfaces. It is worth noting
that any interesting behavior that is discovered with a case table should be documented in

the appropriate API handlers.

6.2 Summary

All of the designing and explanation in the previous chapters have culminated in
these patterns. Once these patterns are understood, the hardest part of working with the
system software is designing interfaces. Building the infrastructure of an interface is very
straightforward, allowing for researchers to focus on solving research related problems instead

of problems with the system software.

100

www.manaraa.com

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

System software is complex without considering the unique challenges and work flow
that academic research imposes on software. To meet these specific needs, the system soft-
ware had to be designed from the ground up with the principles of modularity, ease of use
and reliability in mind at every step. This was done by organizing the software into different
processes to enforce divisions between the different portions of the code which encourages
process specific architecture and enables the software to take full advantage of the Raspberry
Pi’s computing resources. These divisions also provided a natural place to introduce process
specific unit tests and when combined with unit tests for the web API and driver specific
tests, the system software is fully end-to-end testable. When combined with a powerful and
extensible configuration system, the system software becomes an easy to use tool for rapid
3D printer hardware development.

Additionally by having the modular components of the system software conform to
a create, test and register work flow, it is possible to generalize the development process
of the software into three straightforward and repeatable patterns. Together this allows
the system software to be as flexible as possible while accommodating for our group’s ever
changing student researcher workforce and allowing research to be the primary focus of the
researchers instead of spending time getting the tools that are used to do research working.

For as good as the architecture is, the implementation is not perfect. Specifically the
inability to separate the web server into its own process, due to the limitations of Flask’s
development server, hurts the modularity of the software, although steps have been taken to
separate the web server code from the rest of the system software core as much as possible.

Fixing this issue is the topic of section 7.2.2. Another problem that is the topic of further

101

www.manaraa.com

discussion in section 7.2.3 is the reliance of the system software on external dependencies
and their potential to break the system software.

Finally, when compared to the architectures of any other part of the system software,
the configuration manager has the most complicated architecture and can be difficult to
reason about in an abstract sense. This is regrettable for such an important piece of the
system software, but given how easy it can be to customize the core, it is no surprise that
providing a framework for managing all of that potential customization would become a
major undertaking in and of itself. As the saying goes, there is no such thing as a free lunch,
and the price of having a complex piece of software be highly modular and configurable is

that configuring that software in a user friendly manner is going to be complicated.

7.2 Future Research

7.2.1 Integration into production research 3D printer

To date, the system software has successfully controlled motorized stages and a light
engine and correctly run a print job using dummy drivers. However it has not yet controlled
an entire 3D printer by running an actual print job. To get the system software into a
production ready state, drivers need to be written for an existing 3D printer and the software
needs to be installed on a 3D printer. Finally a series of test prints need to be run and
compared to prints that were created with the old system software. Once the software is

performing satisfactorily, further development tasks can be planned.

7.2.2 Replace Flask’s development web server with a dedicated web server

As has been expressed multiple times, Flask’s web server imposes severe restrictions on
the system software and needs to be replaced. Architecturally this imposes several interesting
challenges, namely how to manage starting and stopping the core of the system software
alongside the web server and how to adapt the development work flow of the API handlers
to keep them relatively easy to create and test. These problems relate heavily to the bash
scripts that are currently used to install and start the backend and a change in the web

serverwilldikely require those scripts to be rewritten.

102

www.manaraa.com

Replacing the web server and bash scripts is a key step to creating a software ecosys-
tem around the 3D printers. A better web server could serve more web applications alongside
the system software’s frontend, meaning that all of the tools needed to create a print job
could be hosted on a 3D printer. Currently the slicer that is used to turn a CAD model into
a series of cross-sectional images is a web application and it would be convenient to bundle
it directly with the 3D printer. Additionally tools that help create print job files and that
can validate print_ settings.json files could be created and added as part of the installation
process in the bash scripts. If done correctly, the system software could become the basis

for a much larger software ecosystem.

7.2.3 API handler refactor

Late in the development of the system software it was discovered the flask-restplus
package that was being used to create the API handlers and their associated documentation
web page was no longer being updated and had died as a project. A fork of the project
called flask-restx has been created and migrating to it would be ideal. Depending on how
much has changed, this could be a large effort, as the API handlers account for 2,000 of the
roughly 15,000 lines of code in the backend, or about 13% of the total code base. However
this highlights a larger issue with the system software.

As a best practice, system software should minimize the number of external depen-
dencies it relies on, ideally only making use of the programming language’s standard library.
This is because if something happens to one of these external dependencies, it can result in
massive refactoring in the system software. Currently the system software relies on Flask,
flask-restplus and a JSON schema validation package as external dependencies. Of the three,
Flask has the largest supporting community and is the lowest risk package to employ and
the JSON schema package is very actively maintained and has 2.8k stars on GitHub as of
this writing.

It would be ideal to remove any kind of dependency for the API handlers. Building
the handlers from scratch using Flask is possible but the primary feature that flask-restplus
has is the ability to create swagger files and a built in documentation page for the API.

Further research in this.area,may prove fruitful.

103

www.manaraa.com

7.2.4 Logging

Aside from printing logging messages to the terminal while running, the system soft-
ware does not include a formal logging system. Currently the logging needs of a 3D printer
are not well articulated which is the main challenge in terms of design. Two possible ap-
proaches are adding a logging package directly to the system software, or have the logger
function as a Linux daemon that services the logging need of all of the software tools that
run on the 3D printer. Also there would be design decisions about what format the log data
should be saved as, like plain text in a text file or an entry in an SQL database. Finally
all of these decisions need to account for the memory limitations of the Raspberry Pi and

provide a concrete solution to freeing disk space by deleting old logs.

7.2.5 File browser

Currently the system software only allows for a single print job file or image file for a
light engine to be uploaded at a time. Often it is useful to be able to store frequently printed
print jobs on the 3D printer for easy access, but this leads to a file management and storage
problem which is avoided by the single file upload approach. It would be useful to add
API handlers that allow for uploading, deleting, reading the directory structure, renaming,
copying, pasting and moving files on the Raspberry Pi so that the file management problem
can be outsourced to the users. Such an interface should also include handlers that return

how much of the total disk space is currently in use.

7.2.6 Impact assessment and prospects

The primary impact of this work comes from making the system software more ac-
cessible in both a technical and human sense. Technically it removes the processing and
hardware modularity limitations that plagued previous iterations of the software, while also
providing a platform that is capable of interfacing with a much greater variety of software
tools. In the human sense, the software provides researchers multiple ways to control a 3D
printer, ranging from a polished web GUI to a bash script that is make curl requests. Addi-

tionally, this thesis, specifically the information found in chapters 5 and 6, also provides a

104

www.manaraa.com

clearly defined tutorial of how the system software works and provides a way to train more
of our group’s student researchers on the code base. As the future prospects of the software
are tied to having the skilled man power to port the existing hardware drivers over to the

system software and to test and debug the software on hardware, having this thesis as a

resource is invaluable.

105

www.manharaa.com

1]

2]

[4]

[5]

Bibliography

P. Gravesen, J. Branebjerg, and O. S. Jensen, “Microfluidics-a review,” Journal of
micromechanics and microengineering, vol. 3, no. 4, p. 168, 1993. 1

R. M. Camacho, D. Fish, M. Simmons, P. Awerkamp, R. Anderson, S. Carlson, J. Laney,
M. Viglione, and G. P. Nordin, “Self-sustaining 3d thin liquid films in ambient environ-
ments,” Advanced Materials Interfaces, vol. 7, no. 9, p. 1901887, 2020. 1

M. J. Beauchamp, A. V. Nielsen, H. Gong, G. P. Nordin, and A. T. Woolley, “3d
printed microfluidic devices for microchip electrophoresis of preterm birth biomarkers,”
Analytical chemistry, vol. 91, no. 11, pp. 7418-7425, 2019. 1

C. I. Rogers, K. Qaderi, A. T. Woolley, and G. P. Nordin, “3d printed microfluidic
devices with integrated valves,” Biomicrofluidics, vol. 9, no. 1, p. 016501, 2015. 1, 2

Y. Xia and G. M. Whitesides, “Soft lithography,” Annual review of materials science,
vol. 28, no. 1, pp. 153184, 1998. 1

K. Raj M and S. Chakraborty, “Pdms microfluidics: A mini review,” Journal of Applied
Polymer Science, vol. 137, no. 27, p. 48958, 2020. 1

K. Tkuta, K. Hirowatari, and T. Ogata, “Three dimensional micro integrated fluid sys-
tems (mifs) fabricated by stereo lithography,” in Proceedings IEEE Micro Electro Me-
chanical Systems An Investigation of Micro Structures, Sensors, Actuators, Machines
and Robotic Systems, 1994, pp. 1-6. 2, 3

H. Gong, B. P. Bickham, A. T. Woolley, and G. P. Nordin, “Custom 3d printer and
resin for 18 m x 20 m microfluidic flow channels,” Lab Chip, vol. 17, pp. 2899-2909,
2017. [Online|. Available: http://dx.doi.org/10.1039/C7LC00644F 2, 7

H. Gong, M. Beauchamp, S. Perry, A. T. Woolley, and G. P. Nordin, “Optical approach
to resin formulation for 3d printed microfluidics,” RSC advances, vol. 5, no. 129, pp.
106 621-106 632, 2015. xiii, 15, 16

Python Global Interpreter Lock (GIL), accessed on July 26, 2020, https://wiki.python.
org/moin/GloballnterpreterLock. 11

Guide - Vue.js, accessed on July 4, 2020, https://vuejs.org/v2/guide/#top. 25

Component API Overview, accessed on July 4, 2020, https://vuetifyjs.com/en/
components/api-explorer/. 25

Cross-origin Resource Sharing, accessed on July 26, 2020, https://fetch.spec.whatwg,.
org/. 41

106

www.manaraa.com

http://dx.doi.org/10.1039/C7LC00644F
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://vuejs.org/v2/guide/#top
https://vuetifyjs.com/en/components/api-explorer/
https://vuetifyjs.com/en/components/api-explorer/
https://fetch.spec.whatwg.org/
https://fetch.spec.whatwg.org/

[14] Flask-RESTPlus’s documentation, accessed on July 4, 2020, https://flask-restplus.
readthedocs.io/en/stable/. 82

[15] Understanding JSON Schema, accessed on July 4, 2020, https://json-schema.org/
understanding-json-schema/. 89

[16] bootprint, accessed on July 4, 2020, https://www.npmjs.com/package/bootprint. 89

[17] unittest - Unit testing framework, accessed on July 4, 2020, https://docs.python.org/3.
7/library /unittest.html. 94

107

www.manharaa.com

https://flask-restplus.readthedocs.io/en/stable/
https://flask-restplus.readthedocs.io/en/stable/
https://json-schema.org/understanding-json-schema/
https://json-schema.org/understanding-json-schema/
https://www.npmjs.com/package/bootprint
https://docs.python.org/3.7/library/unittest.html
https://docs.python.org/3.7/library/unittest.html

APPENDIX A. APPENDIX

108

www.manharaa.com

A.1 main.py

1 from src.config import ConfigManager
2 from multiprocessing import Process,
3 from src.process_interfaces

— LightEnginesInterface
.controllers

4 from src.process_interfaces

— PrintJobController

5 from src.data_structs.internal messages.

— ABC_ PrintJobMessage

6 from src.data_structs.internal messages.

7 ABC_ AxisMessage ,
8 ABC_ LightEngineMessage ,
9)

10 from src.data_structs.internal messages.

— ABC_ RouterMessage

11 import argparse

12 from src.data_structs import Configlnterfaces

13 from src.data_ structs.internal messages

14 import signal , sys, subprocess

0s
15 import traceback

16 from threading import Thread

17 from src.webserver import setup,

18

run

19
20 defaultConfigPath = (
21
— dummy_ config.json”
22)

23 c¢cm = None

{}
{

24 inQs =
25 outQs =

109

Queue,

.hardware import AxeslInterface,

os.path.abspath(os.path.dirname(__file__)) + ”/../config_files/

Array

import MessageRouter ,

controllers

import

hardware import (

controllers import

import Shutdown

www.manharaa.com

26 router = None
27 aifProc = None
28 leifProc = None
29 pjifProc = None
30
31
32 def startAxesProcess():
33 try:
34 axesQueueln = Queue()
35 axesQueueOut = Queue ()
36 aif = AxesInterface(axesQueueln, axesQueueOut)
37 global aifProc
38 axesConfig = cm.getConfig(Configlnterfaces.Axes)
39 aifProc = Process(
40 target=aif.run,
41 kwargs=axesConfig.getArguments () ,
42 name=ABC__ AxisMessage. destination ,
43)
44 aifProc.start ()
45 except :
46 traceback . print__exc ()
47 # if process failed to create, don’t create the process
48 return
49
50 global inQs, outQs
51 inQs [ABC_AxisMessage. destination| = axesQueueOut
52 outQs [ABC__AxisMessage. destination] = axesQueueln
53
54
55 def startLightEnginesProcess():
56 try:

= Queue ()

110

www.manharaa.com

58 lightEnginesQueueOut = Queue()
59 leif = LightEnginesInterface (lightEnginesQueueln ,
— lightEnginesQueueOut)

60 global leifProc

61 LightEnginesConfig = c¢cm. getConfig (Configlnterfaces.LightEngines
=)

62 leifProc = Process(

63 target=leif .run,

64 kwargs=LightEnginesConfig.getArguments () ,

65 name=ABC_ LightEngineMessage . destination ,

66)

67 leifProc.start ()

68 except :

69 traceback . print_exc ()

70 # if process failed to create, don’t create the process

71 return

72

73 global inQs, outQs

74 inQs [ABC_LightEngineMessage. destination]| = lightEnginesQueueOut

75 outQs [ABC_ LightEngineMessage . destination] = lightEnginesQueueln

76

7

78 def startPrintJobProcess():

79 try:

80 pjQueueln = Queue ()

81 pjQueueOut = Queue ()

82 pjif = PrintJobController (pjQueueln, pjQueueOut)

83 global pjifProc

84 PrintJobConfig = cm.getConfig(Configlnterfaces.PrintJob)
85 pjifProc = Process(

86 target=pjif.run,

87 kwargs=PrintJobConfig.getArguments () ,

111

www.manharaa.com

88 name=ABC_ PrintJobMessage. destination ,

89)

90 pjifProc.start ()

91 except:

92 traceback . print__exc ()

93 # if process failed to create, don’t create the process
94 return

95

96 global inQs, outQs

97 inQs [ABC_PrintJobMessage. destination] = pjQueueOut

98 outQs [ABC_ PrintJobMessage. destination| = pjQueueln

99

100

101 def startRouterProcess():

102 nny

103 Creates the Router process.

104

105 Must run after all of the other processes have been created, as the

— last thing it does is

106 call the flask server, which stalls.

107

108 Paramters:

109 cm (ConfigManager) - contains config info for the Router and

— the flask server.

110 inQueues (dict) - dictionary of incoming message queues and
— what processes they belong to.

111 outQueues (dict) - dictionary of outgoing message queues and
— what processes they belong to.

112 nry

113 try:

114 global inQs, outQs, cm, router

112

www.manharaa.com

115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

serverConfig , debug = cm.getConfig(Configlnterfaces.Router).

— getArguments ()
router = MessageRouter (inQs, outQs)
Thread (

target=router .run,

kwargs={"configManager”: cm, ”"debug”: debug},

name=ABC_ RouterMessage . destination ,
).start ()
setup (router , serverConfig, cm)
run ()

router .shutdown ()

except Exception as e:
traceback . print_exc ()
for _, queue in outQs.items():

queue . put (Shutdown ())

132 def main():

133 nrr

134 Sets up and starts the system software.
135 nor

136 # setup and start all of the processes
137 start AxesProcess ()

138 startLightEnginesProcess ()

139 startPrintJobProcess ()

140 startRouterProcess ()

141

142

143 parser = argparse.ArgumentParser (description="System software for the

< HR3 3D printer.”)

113

www.manharaa.com

145 77_g77’

146 7 --gen_docs”

147 action="store_true”,

148 help="generates updated docs for the configuration file”,

149)

150 parser .add__argument (

151 S

152 7 --run”,

153 action="store_true”,

154 help="Generates the docs and starts the system software with the

< dummy configuration unless \

155 another config file is provided with the --config flag.”,

156)

157 parser .add__argument (”-c”, ”--config”, type=str, help="path to config
— file”)

158 args = parser.parse_args ()

159 if args.gen_docs:

160 ConfigManager (defaultConfigPath). generateSchemaDocumentation (

161 "src/config/schema/single_file_config_for__documentation.json”,
162 ”src/webserver /config documentation/”,

163)

164 elif args.run:

165 cm = ConfigManager (args.config if args.config else
— defaultConfigPath)

166 main ()

167 else:

168 parser.print_help ()

A.2 ABC_ Message.py

1 import uuid

114

www.manharaa.com

3

4 class ABC_ Message:

5 29

6 Parent class for all messages.

7

8 Child classes are intended to be initialized with all of the
— information that the message

9 needs to have. All attributes of the class should be class
— properties.

10

11 Attributes:

12 uuid - unique id for the message

13 type - customizable param for specifying the message type

14 destination - process the message is intended for

15 nr

16

17 _uuid = uuid.uuid4 () .hex

18 _type = None

19 ~sender = None

20 _destination = None

21

22 def __init__ (self):

23 nn

24 Creates a uuid for the message

25 R

26 self . uuid = uuid.uuid4 () .hex

27

28 @property

29 def uuid(self):

30 return self. wuuid

31

115

www.manharaa.com

33 def uuid(self, uuid):

34 if isinstance (uuid, str):

35 self. uuid = uuid

36 else:

37 raise ValueError(”uuid must be a string”)

38

39 @property

40 def type(self):

41 return self._type

42

43 @type. setter

44 def type(self, newType):

45 self._ type = newType

46

47 @property

48 def sender(self):

49 return self. sender

50

51 @sender . setter

52 def sender(self, newType):

53 self._sender = newType

54

55 @property

56 def destination (self):

57 return self. destination

58

59 @Qdestination.setter

60 def destination (self , newType):

61 self. destination = newType
A.3 light engine message.py

116

www.manharaa.com

1 from src.data_structs.internal messages import ABC_Message
2 from src.data_ structs.enums import MessageType, PublisherType
3 from flask import Flask, render_template, jsonify , send_ file
4 from PIL import Image

5 import numpy as np

6

7

8 class ABC_ LightEngineMessage (ABC_ Message) :

9 » 9

10 Light Engine specific message parent class

11 nnY

12

13 _light_engine = None

14 destination = ”light_engines”

15

16 def __init__ (self):

17 super ().__init__ ()

18

19 @property

20 def light engine(self):

21 return self._ light_engine

22

23 @light__engine.setter

24 def light_engine (self, light_engine):

25 if isinstance(light engine, str):

26 self._light_engine = light__engine

27 else:

28 raise ValueError(”light engine name must be of type str.”)
29

30

31 class LightEnginesNames(ABC_LightEngineMessage) :

117

www.manharaa.com

32 799

33 Gets the name of all the light engines.

34 nrr

35

36 def __init__ (self):

37 super () .__init__ ()

38

39 def _ str (self):

40 return "LightEngineNames: {}”.format ({”uuid”: self.uuid, 7type”

< : self.type})
41
42
43 class LightEnginelnitialize (ABC_LightEngineMessage) :

44 no

45 Getter/Setter for the initializations state of a light engine.

46 nr

47

48 def __init__ (self, light_engine, set=False):

49 super () .__init__ ()

50 self.type = MessageType.set if set else MessageType.get

51 self.light_engine = light_engine

52

53 def __str_ (self):

54 return "LightEnginelnitialize: {}”.format(

55 "uuid”: self.uuid, "type”: self.type, "light_engine”: self
< .light_engine}

56)

57

58

59 class LightEnginePower (ABC_LightEngineMessage) :

60 nr

118

www.manharaa.com

62 nrr
63
64 __power = None
65
66 def __init_ (self, light engine):
67 super () .__init__ ()
68 self.light_engine = light_engine
69
70 def str (self):
71 return ”LightEnginePower: {}”.format (
72 {7uuid”: self.uuid, "type”: self.type, ”light_engine”: self
< .light_engine ,}
73)
74
75
76 class LightEnginelmage (ABC_LightEngineMessage) :
7 nrr
78 Getter/Setter for the image of a light engine.
79 nor
80
81 def __init__ (
82 self , light_ engine, publisherType=PublisherType.none, set=False
— , image=None
83 K
84 super () .__init__ ()
85 self .type = MessageType.set if set else MessageType. get
86 if isinstance (publisherType, PublisherType):
87 self . publisherType = publisherType
88 else:
89 raise ValueError(”publisherType must be a PublisherType
— enum”)
= light__engine

119

www.manharaa.com

91 self.image = image
92 if set and (image is None):
93 raise ValueError(”Image cannot be set without valid image

— value”)

94

95 def _ str (self):

96 return ”LightEnginelmage: {}”.format (

97 {

98 7uuid”: self.uuid,

99 "type”: self.type,

100 7light__engine”: self.light_engine,
101 "image”: self.image,

102 "publisherType”: self.publisherType,
103 }

104)

105

106

107 class LightEngineBrightness (ABC_LightEngineMessage) :

108 nny

109 Getter/Setter for the brightness of a light engine.

110 nry

111

112 _brightness = None

113

114 def __init__ (self, light_engine, brightness=None, set=False):
115 super (). init__ ()

116 self.type = MessageType.set if set else MessageType.get
117 self.light_engine = light_engine

118 if brightness is not None:

119 self.brightness = brightness

120 if set and (brightness is None):

120

www.manharaa.com

121

raise ValueError (”Image cannot be set without valid

< brightness value”)

@property
def brightness(self):

return self._ brightness

@brightness.setter
def brightness(self, brightness):
self._ brightness = brightness

def __ str (self):

return "LightEngineBrightness: {}”.format(
{
“uuid”: self.uuid,
"type”: self.type,
"light_engine”: self.light_engine,
"brightness”: self.brightness,
}

class LightEnginelmageDimensions(ABC_LightEngineMessage) :

99999

Gets the required dimensions of an image for this light engine

2799

def __init__ (self, light_engine):
super () .__init__ ()
self.light_engine = light_engine

121

www.manharaa.com

152 return "LightEngineMaxBrightness: {}”.format(

153 {7uuid”: self.uuid, "type”: self.type, ”light_engine”: self
< .light_engine}

154)

155

156

157 class LightEngineMaxBrightness (ABC_ LightEngineMessage) :

158 nrr

159 Gets the max valid brightness for a light engine.

160 nnr

161

162 def __init__ (self, light_engine):

163 super () .__init__ ()

164 self.light_engine = light_engine

165

166 def str (self):

167 return "LightEngineMaxBrightness: {}”.format(

168 {7uuid”: self.uuid, 7type”: self.type, "light_engine”: self
< .light_engine}

169)

170

171

172 class LightEngineMinBrightness (ABC_LightEngineMessage) :

173 nrr

174 Gets the min valid brightness for a light engine.

175 nnr

176

L77 def __init__ (self, light_engine):

178 super () .__init__ ()

179 self.light_engine = light_engine

180

122

www.manharaa.com

182 return "LightEngineMinBrightness: {}”.format(

183 {7uuid”: self.uuid, "type”: self.type, ”light_engine”: self
< .light_engine}

184)

185

186

187 class LightEngineRefreshRate (ABC_LightEngineMessage) :

188 nry

189 Getter/Setter for the refresh rate of a light engine.

190 nn

191

192 _refresh_rate = None

193

194 def __init__ (self, light_ engine, refresh rate=None, set=False):

195 super () .__init__ ()

196 self .type = MessageType.set if set else MessageType. get

197 self.light_engine = light_engine

198 if refresh_rate is not None:

199 self . refresh rate = refresh rate

200 if set and (refresh_rate is None):

201 raise ValueError(”Image cannot be set without valid refresh
< rate value”)

202

203 @property

204 def refresh rate(self):

205 return self. refresh rate

206

P07 @refresh rate.setter

208 def refresh rate(self, refresh rate):

209 self. refresh rate = refresh rate

210

123

www.manharaa.com

212 return ”"LightEngineRefreshRate: {}”.format (
213 {
214 7uuid”: self .uuid,
215 "type”: self.type,
216 7light_engine”: self.light_engine,
D17 "refresh rate”: self.refresh rate
218 }
219)
220
221
222 class LightEngineMaxRefreshRate (ABC_LightEngineMessage) :
223 nr
224 Gets the max valid refresh rate for a light engine.
225 nry
226
D27 def __init__ (self, light_engine):
P28 super () .__init__ ()
229 self.light_engine = light_engine
230
231 def _ str (self):
232 return "LightEngineMaxRefreshRate: {}”.format(
233 7uuid”: self.uuid, "type”: self.type, "light_engine”: self
< .light_engine}
234)
235
236
237 class LightEngineMinRefreshRate (ABC_LightEngineMessage) :
238 ne
239 Gets the min valid refresh rate for a light engine.
240 nnn
41
light_engine):

124

www.manharaa.com

243 super () .__init__ ()

244 self.light_engine = light_engine

D45

246 def str (self):

247 return "LightEngineMinRefreshRate: {}”.format(

248 {7uuid”: self.uuid, 7type”: self.type, ”light_engine”: self
< .light_engine}

249)

250

251

252 class LightEnginePerformExposure (ABC_LightEngineMessage) :

253 nry

254 Command to perform an exposure using the current configuration.

255 nry

256

D57 __exposure_time = None

258

259 def __init__ (self, light_engine, exposure_time):

260 super () .__init__ ()

261 self.light engine = light_engine

P62 self.exposure_time = exposure_ time

263

264 @property

265 def exposure_ time(self):

266 return self._ exposure_time

267

D68 @exposure__time. setter

269 def exposure_time(self , exposure_time):

270 self . exposure_time = exposure_time

271

72 def str (self):

P73 return ”"LightEnginePerformExposure: {}”.format(

125

www.manharaa.com

275 “uuid”: self.uuid,

276 "type”: self.type,

277 "light_engine”: self.light_engine,
D78 7exposure_time”: self.exposure_time,
279 }

280)

P81

282

283 class LightEngineLogMessage (ABC_LightEngineMessage) :

284 nny

285 Getter for a new log message

286 ne

D87

P88 def __init__ (self, light_engine):

289 super () .__init__ ()

290 self.light_engine = light_engine

291

292 def _ str (self):

293 return "LightEngineDMD: {}”.format (

294 {7uuid”: self.uuid, "type”: self.type, ”light_engine”: self
< .light_engine ,}

295)

296

297

298 class LightEngineLogging (ABC_LightEngineMessage) :

299 nrr

300 Getter /Setter for the logging state of a light engine.
301 nrr

302

303 _logging = None

126

www.manharaa.com

B05 def __init__ (self, light_engine, logging=None, set=False):

306 super () .__init__ ()

307 self.type = MessageType.set if set else MessageType. get

308 self.light_engine = light_engine

309 self.logging = logging

310 if set and logging is None:

311 raise ValueError (”’DMD cannot be set without valid logging
— value”)

312

313 @property

314 def logging(self):

315 return self._ logging

316

317 @logging . setter

318 def logging (self, logging):

319 self. logging = logging

320

321 def str (self):

322 return ”LightEngineDMD: {}”.format (

323 {

324 “uuid”: self.uuid,

325 "type”: self.type,

326 "light_engine”: self.light_engine,

327 "logging”: self.logging,

328 }

329)

330

331

832 class LightEngineLED (ABC_ LightEngineMessage) :

333 ne

334 Getter/Setter for the led of a light engine.

35 v

127

www.manharaa.com

336
337 _led = None
338
339 def ___init__ (self, light_engine, led=None, set=False):
340 super ().__init__ ()
341 self.type = MessageType.set if set else MessageType. get
342 self.light_engine = light_engine
343 self.led = led
344 if set and led is None:
345 raise ValueError ("LED cannot be set without valid led value
=)
346
347 @property
348 def led(self):
349 return self. led
350
351 @Qled . setter
352 def led(self, led):
353 self. led = led
354
355 def _ str (self):
356 return ”LightEngineLED: {}”.format (
357 {
358 “uuid”: self.uuid,
359 "type”: self.type,
360 "light_engine”: self.light_engine,
361 "led”: self.led,
362 }
363)
364
365
gineReset (ABC_ LightEngineMessage) :

128

www.manharaa.com

367 n

368 Driver reset message.

369 ne

370

371 def __init_ (self, light engine):

372 super () .__init__ ()

373 self.light_engine = light_engine

374

375 def str (self):

376 return ”"LightEngineReset: {}”.format (

377 {7uuid”: self.uuid, "type”: self.type, ”light_engine”: self
< .light_engine}

378)

A4 system messages.py

1 from src.data_structs import ErrorState

2 from src.data_structs.internal messages import ABC_Message

3

4

5 class Shutdown (ABC_Message) :

6 9%

7 Sent to processes to force them to shutdown cleanly.
8 9%

9

10 def __init__ (self):

11 super ().__init__ ()

12 self.type = ”shutdown”

13

14 def _ str (self):

15 return ”Shutdown: {}”.format ({”uuid”: self.uuid, "type”: self.

129

www.manharaa.com

16
17
18
19
20

21
22
23
24

25

26
27

class CommandStatus (ABC_Message) :

7NN

Execution status of a command recieved either from the API or

— another process

Atrributes:
state (ErrorState) - error code for the command
traceback (str) - if state is ErrorState.error, then the stack

< trace is placed here.

errorMsg (str) - if state is ErrorState.error, then the error

— string is placed here.

999999

~returnVal = None

__state = ErrorState.none
_errorMsg = 77
__traceback = 77"

def __init__ (
self |
uuid ,
destination ,
returnVal=None,
errorState=ErrorState.none,

9

errorMsg="",

traceback="",

9999 99

Creates a command status.

130

www.manharaa.com

45 Parameters:

46 uuid (uuid.hex) - unique id of the original message that
— this object is responding to.

47 destination (str) - name of the process that the message is
— going to

48 returnVal (any) - any values that are returned by the
— function

49 errorState (ErrorState) - error code that resulted from the
— command

50 errorMsg (str) - error message

51 traceback (str) - traceback of the error

52 nry

53 super () .__init__ ()

54 self.type = "status”

55 self.uuid = uuid

56 self .returnVal = returnVal

57 self.state = errorState

58 self.destination = destination

59 self .errorMsg = errorMsg

60 self .traceback = traceback

61

62 @property

63 def returnVal(self):

64 nry

65 Getter for the returnVal

66

67 Returns:

68 anything - return value of the command

69 nny

70 return self. returnVal

71

131

www.manharaa.com

73 def returnVal(self, retVal):
74 nnn

75 Setter for the returnVal
76 nnn

77 self. returnVal = retVal
78

79 @property

80 def state(self):

81 nnn

82 Getter for the state

83

84 Returns:

85 ErrorState - error status of the command
86 nen

87 return self. state

88

89 Qstate.setter

90 def state(self, newState):

91 nnn

92 Setter for the state

93 nen

94 if isinstance(newState, ErrorState):
95 self. state = newState
96 else:

97 raise ValueError(”State must be of type ErrorState”)
98

99 @property

100 def traceback(self):

101 nnn

102 Getter for the traceback
103

132

www.manharaa.com

105 str - full stack traceback of any errors
106 nen
107 return self. traceback
108
109 @traceback.setter
110 def traceback(self , newMessage):
111 nn
112 Setter for the traceback
113 no
114 if isinstance (newMessage, (str, type(None))):
115 self._ traceback = newMessage
116 else:
117 print (newMessage)
118 raise ValueError(”traceback must be of type str”)
119
120 @property
121 def errorMsg(self):
122 no
123 Getter for the error message
124
125 Returns:
126 str - error message
127 nr
128 return self._ errorMsg
129
130 @errorMsg . setter
131 def errorMsg(self , newMessage):
132 nnn
133 Setter for the error message
134 nry
135 if isinstance (newMessage, (str, type(None))):
= newMessage
133

www.manharaa.com

137 else:

138 raise ValueError(”errorMsg must be of type str”)
139

140 def str (self):

141 7y

142 Human readable print string.

143 nny

144

145 return ”CommandStatus <obj>: {}”.format (
146 {

147 “uuid”: self.uuid,

148 "sender”: self.sender,

149 "destination”: self.destination ,
150 "returnVal”: self.returnVal,

151 "state”: self.state,

152 "errorMsg”: self.errorMsg,

153 "traceback”: self.traceback,

154 }

155)

A.5 LightEnginesInterface.py

1 import src.hardware.light_engines as drivers

2 import traceback , sys

3 from src.data_structs.internal messages import CommandStatus, Shutdown
4 from src.process_interfaces import ABC_ Interface

5 from src.data_ structs import ErrorState

6 from threading import Thread

7 from src.data_structs.internal messages.hardware import (

8 LightEnginesNames ,

9 LightEnginePower

134

www.manharaa.com

11
12
13
14
15
16
17
18
19
20
21
22
23
24)

25 from src.data_structs import MessageType

26
27

28 class LightEnginesInterface (ABC_Interface):

29
30
31

32
33

34
35
36
37
38

LightEngineReset ,
LightEngineLogging ,
LightEngineLogMessage ,
LightEngineLED |,
LightEngineRefreshRate ,
LightEngineMaxRefreshRate ,
LightEngineMinRefreshRate ,
LightEnginePerformExposure
LightEnginelmage ,
LightEngineBrightness,
LightEngineMaxBrightness
LightEngineMinBrightness

LightEnginelmageDimensions

99999

Interface for the process that controls all hardware light engines.
Documentation for undocumented functions can be found

<« Interface abstract base class.

Attributes:

light engines (dict):

— classes. The keys are the name of the light engine and

— the

values are the light engine object.

99999

light engines = {}

valid__sub_ configs = [?DummyDriver”, ”"I12CLightEngine”]

)

bl

dictionary of all of the light engine

135

inside the

www.manharaa.com

40
41
42
43
44
45
46
47
48
49
50
51

52
53
o4
55

56
57
58
99
60
61
62
63
64

def __init__ (self, in_queue, out_queue):
» 9
Sets the input and output queues
Parameters:
in_queue (Queue): input queue from the flask process
out__queue (Queue): output queue from the flask process

277N

super ().__init__ (in_queue, out_queue)

def setupLightEngines(self, light_engine_drivers=][]):
Initializes all of the light engine and driver objects for the
— configuration
specified in the config file.
All light engine objects will be stored in self.light_ engines.
Parameters:
light _engine_ drivers (dict): passed in configuration of the

— light engine

9999 99

TODO: probably something wrong here

for driverConfig in light_ engine_ drivers:
get the light_engine_drivers class object
module = getattr(drivers, driverConfig.getClassName())
use the driver to create the light_engines object
initParams = driverConfig.getArguments ()
self.light engines[driverConfig.getName()] = module(**

— initParams)

def run(self, light engine drivers=][], debug=False):

9999 99

136

www.manharaa.com

69
70

71

72

73

Parameters:

light _engine_drivers (list) - configuration options for

— each driver and the light engines that are
attached to it. Each item in the list should

— dictionary with the config

params of a driver, with one of the keys containing a

— list of all the config

params for all the light engines that will be using the

< driver. See docs/Config Files.md
for more details.
self.debug = debug
self.setupLightEngines(light_engine_drivers)

self.processMessages ()

def messageLogic(self , payload):
if self.debug:
print ("LightEnginesInterface received payload: ”
try:
if isinstance (payload, LightEnginesNames):
self.outq.put(
CommandStatus (

payload . uuid ,

payload .sender ,

returnVal=list (self.light engines.keys()),

elif isinstance(payload, LightEnginelnitialize):
if payload.type = MessageType. get:
self .sendResponseMessage (

payload . uuid ,

137

be a

, payload)

www.manharaa.com

97
98

99
100
101
102
103
104

105
106
107
108
109
110
111
112

113
114
115
116
117
118

payload .sender ,

self.light engines[payload.light_ engine].

— get_initialized ,
)
else:
self.sendResponseMessage (
payload . uuid ,

payload .sender ,

self.light_engines[payload.light_engine].

— set__initialized ,

elif isinstance(payload, LightEnginePower):
self .sendResponseMessage (
payload . uuid ,

payload .sender ,

self.light_engines [payload.light_engine].get_power,

elif isinstance(payload, LightEnginelmageDimensions):

self .sendResponseMessage (
payload . uuid ,

payload .sender ,

self.light engines[payload.light engine].

— get_image_dimensions,

elif isinstance (payload, LightEnginelmage):
if payload.type = MessageType. get:
self .sendResponseMessage (
payload . uuid ,

payload .sender ,

138

www.manharaa.com

126 self.light_engines[payload.light_engine].

— get__image,

127 (payload . publisherType) ,

128)

129 else:

130 self.sendResponseMessage (

131 payload . uuid ,

132 payload .sender ,

133 self.light_engines[payload.light_engine].

— set__image,

134 (payload .image) ,

135)

136

137 elif isinstance(payload, LightEngineRefreshRate):

138 if payload.type = MessageType. get:

139 self.sendResponseMessage (

140 payload . uuid ,

141 payload .sender ,

142 self.light_engines[payload.light_engine].

— get_refresh_rate,

143)

144 else:

145 self .sendResponseMessage (

146 payload . uuid ,

147 payload .sender ,

148 self.light_engines[payload.light_engine].
— set_refresh_rate,

149 (payload.refresh_rate),

150)

151

152 elif isinstance (payload, LightEngineMaxRefreshRate):

53 self .sendResponseMessage (

139

www.manharaa.com

154 payload . uuid ,

155 payload .sender ,

156 self.light_engines[payload.light_engine].
— get__max_refresh_rate,

157)

158

159 elif isinstance(payload, LightEngineMinRefreshRate):

160 self .sendResponseMessage (

161 payload . uuid ,

162 payload.sender ,

163 self.light engines[payload.light engine].
— get_min_refresh_rate,

164)

165

166 elif isinstance (payload, LightEnginePerformExposure):

167 self.sendResponseMessage (

168 payload . uuid ,

169 payload .sender ,

170 self.light_engines [payload.light_engine].
— perform__exposure

171 (payload . exposure_time) ,

172)

173

174 elif isinstance (payload, LightEngineBrightness):

175 if payload.type = MessageType. get:

176 self .sendResponseMessage (

L77 payload . uuid ,

178 payload .sender ,

179 self.light_engines[payload.light_engine].

— get__brightness,
180)

140

www.manharaa.com

182 self .sendResponseMessage (

183 payload . uuid ,
184 payload .sender
185 self.light_engines[payload.light_engine].

— set__brightness,

186 (payload . brightness) ,

187)

188

189 elif isinstance (payload, LightEngineMaxBrightness):
190 self.sendResponseMessage (

191 payload . uuid ,

192 payload .sender ,

193 self.light_engines [payload.light_engine].

— get_max_ brightness,

194)

195

196 elif isinstance(payload, LightEngineMinBrightness):

197 self .sendResponseMessage (

198 payload . uuid ,

199 payload .sender ,

200 self.light engines[payload.light engine].
— get__min_ brightness,

201)

202

203 elif isinstance(payload, LightEngineLogging):

204 if payload.type = MessageType. get:

205 self .sendResponseMessage (

206 payload . uuid ,

207 payload .sender ,

208 self.light_engines[payload.light_engine].

— get_logging ,

141

www.manharaa.com

210 else:

211 self .sendResponseMessage (

212 payload . uuid ,

213 payload .sender ,

214 self.light engines[payload.light engine].
— set_logging ,

215 (payload.logging) ,

D16)

217

218 elif isinstance(payload, LightEngineLogMessage):

219 self .sendResponseMessage (

220 payload . uuid ,

221 payload .sender ,

D22 self.light engines[payload.light engine].get_hw_log

— ’

223)

224

225 elif isinstance (payload, LightEngineLED):

226 if payload.type = MessageType. get:

27 self.sendResponseMessage (

D28 payload . uuid ,

229 payload .sender

230 self.light_engines[payload.light_engine].
— get_led,

231)

232 else:

233 self .sendResponseMessage (

234 payload . uuid ,

235 payload .sender ,

236 self.light_engines[payload.light_engine].
— set_led,

(payload.led),

142

www.manharaa.com

238)

239

240 elif isinstance(payload, LightEngineReset):

241 self.sendResponseMessage (

242 payload . uuid ,

243 payload .sender ,

P44 self.light_engines[payload.light_engine].
— reset_ driver

D45)

P46

247 except Exception as e:

248 self.outq.put(

249 CommandStatus (

250 payload . uuid ,

251 payload .sender ,

252 errorState=ErrorState.error ,

253 errorMsg="{}: {}”.format(type(e).__name , e.args),

254 traceback=traceback.print_exc(),

255)

D56)

257

258 def shutdown(self):

259 super () .shutdown ()

260 print ("Light Engines Interface Shutdown”)

A.6 ABC_ LightEngineDriver.py

1 import abc
2 from threading import Lock

3 from functools import wraps

143

www.manharaa.com

6 class ABC_ LightEngineDriver (metaclass=abc.ABCMeta) :

7 » 9

8 This class defines the minimum interface needed for a driver.

9 The purpose of a driver is:

10 1. Contain all of the objects necessary for direct communication

— with the hardware.

11 2. Initializing communication with the hardware.

12 3. Cleanly disconnecting and shutting down the hardware.

13 4. Keeping track of the initialized state wvariable.

14 5. Resetting the hardware driver

15 Attributes:

16 initialized (bool) - state variable to track if the software
— connected to the hardware

17 state_lock (Lock) - for use when reading/writing state
— variables to keep the driver thread safe.

18 power (bool) - state variable to track if the power to the
— light engine is on or off

19 nry

20

21 _initialized = False

22 _state_lock = Lock()

23 __power = False

24

25 @abc. abstractmethod

26 def __init__ (self , **kwargs):

27 nn

28 Initializes the Light Engine object.

29 Returns:

30 none or error if invaild

31 nry

32 raise NotImplementedError

144

www.manharaa.com

34 @abc. abstractmethod

35 def get_image_dimensions(self):

36 nrr

37 Gets the dimensions of the expected image

38

39 Returns:

40 dict - width and height keywords

41 nr

42 raise NotImplementedError

43

44 @abc. abstractmethod

45 def get initialized (self):

46 nrr

47 Getter for the initialized state

48 Returns:

49 self. initialized (bool): is the hardware connected

50 nrr

51 raise NotlmplementedError

52

53 @abc. abstractmethod

54 def set_initialized (self):

55 nrr

56 Setter for the initialized state

57 nrr

58 raise NotImplementedError

59

60 @abc. abstractmethod

61 def reset driver(self):

62 nry

63 Resets the state of the driver / hardware to a pre-initialized
— state

64 v

145

www.manharaa.com

65 raise NotlmplementedError
66

67 @abc. abstractmethod

68 def get power(self):

69 nnn

70 Getter for the power state
71 Returns:

72 self. power (bool as string)
73 nnn

74 raise NotImplementedError
75

76 @abc. abstractmethod

7 def set_led(self, pos):

78 nen

79 Params:

80 on/off

81 Setter for the LED to on or off
82 Returns:

83 none or error if invalid
84 nnn

85 raise NotlmplementedError
86

87 @abc. abstractmethod

88 def set_logging(self, pos):

89 nen

90 Params:

91 on/off

92 Setter for the logging to on or off
93 Returns:

94 none or error if invalid
95 nnn

146

www.manharaa.com

97
98
99
100
101
102
103
104

@abc. abstractmethod
def set_image(self , path):
Params:
image file

Setter for the image to given file

Absolute path to the image is given. It is expected for this

< function to validate the
image, including if it is the correct dimensions.
Returns:

none or error if invalid

999999

raise NotlmplementedError

@abc. abstractmethod
def set__brightness(self, brightness):
Params:
brightness
Setter for the brightness
Returns:
none or error if invalid

9999 99

raise NotlmplementedError

@abc. abstractmethod

def set_refresh_rate(self, rate):

999999

Params:
refresh rate

Setter for the refresh rate

147

www.manharaa.com

128 Returns:

129 none or error if invalid

130 R

131 raise NotImplementedError

132

133 @abc. abstractmethod

134 def perform__exposure(self , exposure_time):

135 R

136 Exposes the current image using the currently configured
— brightness and refresh rate

137 Params:

138 exposure time

139 Returns:

140 none or error if invalid

141 nry

142 raise NotlmplementedError

143

144 @abc. abstractmethod

145 def get_ led(self):

146 nr

147 Getter for the LED

148 Returns:

149 on or off as string

150 R

151 raise NotImplementedError

152

153 @abc. abstractmethod

154 def get_logging (self):

155 nny

156 Getter for the logging

157 Returns:

58 on or off as string

148

www.manharaa.com

159 nrr

160 raise NotlmplementedError
161

162 @abc. abstractmethod

163 def get_image(self):

164 nry

165 Getter for the image

166 Returns:

167 return image as a png
168 nny

169 raise NotlmplementedError
170

171 @abc. abstractmethod

172 def get brightness(self):

173 R

174 Getter for the brightness
175 Returns:

176 brightness as string
177 R

178 raise NotlmplementedError
179

180 @abc. abstractmethod

181 def get_refresh_rate(self):
182 nry

183 Getter for the refresh rate
184 Returns:

185 refresh rate as string
186 R

187 raise NotlmplementedError
188

189 @abc. abstractmethod

149

www.manharaa.com

191 277N

192 Getter for log messages about the hardware.
193
194 Since it is up to the front end to ask for log messages, there

— is potential

195 for this function to be spammed. Best practice is to queue up
— all calls to this

196 function and periodically return a single log message to all of

<~ the calls at the

197 same time. See LightEngineDummyDriver for an example.
198

199 Returns:

200 str - log message

201 7

202 raise NotImplementedError
203

204 @abc. abstractmethod

205 def _ str (self):

206 R

207 Returns message string
208 R

A.7 LightEngineDummyDriver.py

1 from src.hardware.light_ engines import ABC_ LightEngineDriver
2 from threading import Event, Thread

3 from src.data_structs import ErrorState

4 from src.errors import InitializationError

5 import traceback

6 import numpy as np

7 import os

150

www.manharaa.com

9 from PIL import Image

10 from src.data_structs import Publisher, publisher , PublisherType

11

12

13 class LightEngineDummyDriver (ABC_ LightEngineDriver) :

14 nny

15 Dummy driver class to be used for testing purposes and as an
— example of what an actual driver

16 class may look like. It only controls one light engine.

17 Documentation for undocumented functions can be found inside the
— Driver abstract base class.

18 nry

19

20 def __init__ (

21 self |

22 image width=20,

23 image__height=20,

24 brightness_max=100,

25 brightness_ min=1,

26 refresh_rate_ max=50,

27 refresh_rate_min=1,

28 light__engine_name="Dummy” ,

29 tempDir="",

30 logging=False ,

31 loggingFreq=2,

32)

33 R

34 Initializes a dummy light engine

35 Parameters:

36 power (bool) - power of the light engine

37 image_path (string) - path to the image of the light engine

38 image width (int) - width of the image

151

www.manharaa.com

39 image_height (int) - height of the image
40 brightness_max (int) - max for brightness
41 brightness_min (int) - min for brightness
42 refresh_rate_max (int) - max for refresh rate
43 refresh rate _min (int) - min for refresh rate
44 dmd (bool) - dmd of the light engine

45 led (bool) - led of the light engine

46 light engine_name (string) - name of the light engine
47 nnn

48 self.initialized = False

49 self.power = True

50 self.image width = image_ width

51 self .image_height = image_ height

52 self .image_path = "7

53 self.image path publisher = Publisher (1)

54 self.brightness = brightness_min

55 self.brightness_ max = brightness_ max

56 self.brightness__min = brightness_min

57 self .refresh rate = refresh rate min

58 self .refresh rate max = refresh rate max

59 self .refresh_rate_min = refresh_rate_min

60 self.led = False

61 self .light_engine_name = light_engine_name

62 self.tempDir = tempDir

63 # logging stuff

64 self.logging = logging

65 self .loggingFreq = loggingFreq

66 self.logEvent = Event ()

67 self .logQLength = 0

68 self .logMsg = 77

69

70 loggingThread = Thread(target=self.setLog)

152

www.manharaa.com

71 loggingThread . setDaemon (

72 True

73) # set as a daemon so that the thread stops when the program
— exit

74 loggingThread . start ()

75

76 def get image dimensions(self):

77 return {”width”: self.image width, "height”: self.image_ height}

78

79 def get initialized (self):

80 nen

81 Gets value of initialized

82 nnn

83 with self. state lock:

84 return self.initialized

85

86 def set initialized (self):

87 with self. state lock:

88 self.initialized = True

89

90 def get_power(self):

91 with self. state lock:

92 return self.power

93

94 @publisher (”image_path_publisher”)

95 def get_image(self, publisherType):

96 nen

97 Gets the image of the light engine

98

99 Parameters:

100 publisherType (PublisherType) - used by @publisher

01 -

153

www.manharaa.com

102 if not self.initialized:
103 raise ValueError(”cannot get image. Driver is not connected

< to the hardware.”)

104 return self.image_path

105

106 def set_image(self , path):

107 nny

108 Sets the image of the light engine

109

110 Since the image is never loaded onto a light engine and the

111 path to the so called image always stays the same, this

112 function does nothing beside checking if it is wvalid to set the

— image

113

114 nry

115 # make sure image can be set

116 if not self.initialized:

117 raise InitializationError (”driver not initialized”)

118 if not self.power:

119 raise ValueError(”cannot set image, power not on”)

120 if not os.path.exists(path):

121 raise ValueError (”Image file at {} does not exist.”.format (

< path))

122 if ”png” not in path:

123 raise ValueError(”Light engine only displays pngs”)

124 # TODO: validate that the image is the correct dimensions

125 self.image path = path

126 self.image_path_publisher.setChangePublish ()

127 # NOTE: normally the image would be sent to the light engine at
<~ this point

128

154

www.manharaa.com

130
131
132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149

def

def

def

def

with self. state lock:

return self.logging

set__logging (self, logging):
with self. state lock:

self.logging = logging

get_led(self):
if not self.power:
raise ValueError(”cannot
if not self.initialized:
raise ValueError(”cannot get led.
< to the hardware.”)
with self. state lock:

return self.led

set_led(self, led):
if not self.power:
raise ValueError(”cannot
if not self.initialized:
raise ValueError(”cannot get led.
< to the hardware.”)
if isinstance(led, (bool)):
with self. state lock:
self.led = led

else:

raise ValueError(”led can only be a boolean”)

get__brightness(self):

if not self.power:

raise ValueError(”cannot get brightness, power not on”)

if not self.initialized:

155

get led, power not on”)

set led, power not on”)

Driver is not connected

Driver is not connected

www.manharaa.com

160 raise ValueError (
161 "cannot get brightness. Driver is not connected to the

— hardware.”

162)

163 with self. state lock:

164 return self.brightness

165

166 def set__brightness(self, brightness):

167 if not self.power:

168 raise ValueError(”cannot set brightness, power not on”)

169 if not self.initialized:

170 raise ValueError(

171 "cannot get brightness. Driver is not connected to the
— hardware.”

172)

173 if brightness >= self.brightness_ min and brightness <= self.

— brightness__max:

174 with self. state lock:

175 self.brightness = brightness

176 else:

177 raise ValueError(

178 "Brightness {} is invalid. Brightness should be within

— {} and {}.”.format (
179 brightness, self.brightness__min, self.

— brightness_ max

180)

181)

182

183 def get min brightness(self):

184 if not self.power:

185 raise ValueError(”cannot get min brightness, power not on”)

156

www.manharaa.com

187 return self.brightness_min

188

189 def get_ max_brightness(self):

190 if not self.power:

191 raise ValueError(”cannot get max brightness, power not on”)

192 with self. state lock:

193 return self.brightness_ max

194

195 def get refresh rate(self):

196 if not self.power:

197 raise ValueError(”cannot get refresh rate, power not on”)

198 if not self.initialized:

199 raise ValueError(

200 "cannot get refresh rate. Driver is not connected to
— the hardware.”

201)

202 with self. state lock:

203 return self.refresh_rate

204

05 def set_refresh_ rate(self, refresh_ rate):

206 if not self.power:

207 raise ValueError(”cannot set refresh rate, power not on”)

208 if not self.initialized:

209 raise ValueError(

210 "cannot get refresh rate. Driver is not connected to
— the hardware.”

D11)

212 if (

213 refresh rate >= self .refresh rate min

P14 and refresh rate <= self.refresh rate max

215)

state_lock:

157

www.manharaa.com

def

def

def

self .refresh rate = refresh rate
else:
raise ValueError(
"Refresh Rate {} is invalid. Refresh rate should be
— within {} and {}.”.format(
refresh_rate, self.refresh rate_min, self.

— refresh rate max

get_min_refresh rate(self):
if not self.power:
raise ValueError(”cannot get min refresh rate, power not on
<_> 77)
with self._state_lock:

return self.refresh rate min

get__max_refresh rate(self):
if not self.power:
raise ValueError(”cannot get max refresh rate, power not on
;) 77)
with self. state lock:

return self.refresh rate max

perform__exposure(self , exposure_time):
check if the current image is valid
if not os.path.exists(self.image path):
raise ValueError(”No valid image to expose”)
turn on the lighting elements
it is assumed that the image was written to the light engine

— by the image setter

158

www.manharaa.com

simulate wait for the exposure time to pass
with self. state lock:
convert the exposure time to ms
time . sleep (exposure__time / 1000)
turn everything off
self.set_led(False)

def get_hw_log(self):
if not self.logging:
raise ValueError(”Logging is not enabled”)
with self. state lock:
increment queue size
self.logQLength += 1
wait for new log message
self.logEvent . wait ()
with self. state lock:
clear the log event if last call in the queue
if self.logQLength =— 1:
self .logEvent.clear ()
take function call off of the queue
self .logQLength -= 1
return self.logMsg

def setLog(self):
while True:
with self. state lock:
self .logMsg = "Dummy log message”
if self.logQLength > 0:
self.logEvent.set ()

time.sleep (self.loggingFreq)

159

www.manharaa.com

P76 return (

77 "This LE currently has image: ”
R78 + str(self.image path)

279 + 7, power: 7

280 + str(self.power)

81 + 7 led: ”

P82 + str(self.led)

D83 + 7, logging: 7

284 + str(self.logging)

P85 + 7, brightness: 7

P86 + str(self.brightness)

P87 4+ 7, refresh rate: 7

P88 + str(self.refresh rate)

289)

290

291 def reset driver(self):

292 self.initialized = False

293 self.image_ path = 77

294 self.image_path_publisher.setChangePublish ()
295 self.brightness = self.brightness_min
296 self .refresh rate = self.refresh rate min
297 self.logging = False

298 self.logEvent.clear ()

299 self .logQLength = 0

300 self.logMsg = 77

301 self.led = False

A.8 AxisDummyDriver.py

1 from src.hardware.axes.drivers import ABC_ AxisDriver
2 from threading import Lock

S as axes

160

www.manharaa.com

4

5

6 class AxisDummyDriver (ABC__ AxisDriver) :

7 » 9

8 Dummy driver class to be used for testing purposes and as an
— example of what an actual driver

9 class may look like. It only controls one axis.

10

11 In this case, the homed state is part of the driver.

12

13 Documentation for undocumented functions can be found inside the
— Driver abstract base class.

14 nr

15

16 __homed = False

17 __position =0

18 __acceleration = 1

19 _deceleration =1

20 _velocity = 10

21 _maxPos = 5

22 ~minPos = 0

23 validAxes = [”AxisDummyShim” |

24

25 def __init__ (self, acceleration=1, deceleration=1, velocity=10,
— maxPos=5, minPos=0):

26 nn

27 Initializes the values of the driver.

28

29 Also this docstring is used for generating documention for the

— config file , so please
30 make sure it’s been filled out.

161

www.manharaa.com

32 Parameters

33 acceleration (float) - acceleration of the axis
34 deceleration (float) - deceleration of the axis
35 velocity (float) - velocity that the axis moves at
36 maxPos (float) - max valid position of the axis
37 minPos (float) - min valid position of the axis
38 nnn

39 self.acceleration = acceleration

40 self.deceleration = deceleration

41 self.velocity = velocity

42 self . maxPos = maxPos

43 self . minPos = minPos

44

45 def reset driver(self):

46 super () .reset__driver ()

47 self .homed = False

48

49 @property

50 def homed(self):

51 7

52 Getter for the homed state

53

54 Returns:

55 self. homed (bool): is the hardware homed

56 nen

57 with self.stateLock:

58 return self. homed

59

60 @homed . setter

61 def homed(self, state):

62 nnn

63 Setter for the homed state

162

www.manharaa.com

64 nnn

65 newState = state and self.initialized

66 with self.stateLock:

67 # and-ing the value ensures that the driver cannot be homed

68 # without also being initialized

69 self. homed = newState

70

71 @property

72 def position(self):

73 nnn

74 Gets the position of the axis

75 nnn

76 with self.stateLock:

77 return self._position

78

79 @position.setter

80 def position(self, pos):

81 nnn

82 Sets the position of the axis

83

84 Parameters:

85 pos (float): new position

86 nnn

87 # precalculated to avoid the lock waiting for itself to release

88 validPosition = self.minPos <= pos <= self.maxPos

89 if validPosition:

90 with self.stateLock:

91 self._ position = pos

92 else:

93 raise ValueError(

94 "Position: {} is out of bounds. Values must be between
<= position <= {}.”.format (

163

ol L ZJI_‘ILLI

www.manharaa.com

pos, self.minPos,

Q@property
def acceleration (self):
with self.stateLock:

return self. acceleration

@acceleration.setter
def acceleration (self, pos):
with self.stateLock:

self. acceleration = pos

@property
def deceleration (self):
with self.stateLock:

return self. deceleration

@deceleration.setter
def deceleration (self, pos):
with self.stateLock:

self. deceleration = pos

@property
def velocity (self):
with self.stateLock:

return self._velocity

@velocity . setter

def velocity (self, pos):

164

self .maxPos

www.manharaa.com

127 self._ velocity = pos

128

129 @property

130 def maxPos(self):

131 with self.stateLock:

132 return self. maxPos

133

134 @maxPos. setter

135 def maxPos(self, val):

136 if isinstance(val, (int, float)):
137 with self.stateLock:

138 self. maxPos = val

139 else:

140 raise ValueError (”maxPos can only be an int or float”)
141

142 @property

143 def minPos(self):

144 with self.stateLock:

145 return self. minPos

146

147 @minPos. setter

148 def minPos(self, val):

149 if isinstance(val, (int, float)):
150 with self.stateLock:

151 self. minPos = val

152 else:

153 raise ValueError(”minPos can only be an int or float”)
154

155 @staticmethod

156 def createAxes(driverConfig={}, shims=][]):
157 ne

165

www.manharaa.com

158 Given configuration parameters, this function creates a
— properly configured driver
159 and uses it to create properly configured axis objects.
160
161 This function can be called without creating an object first.
162
163 Parameters:

164 driverConfig (dict) - kwargs for DummyDriver. _ init__ ()
165 shims (list of AxisShimConfig) - configs for all of the
— axis associated with this driver.

166

167 Returns:

168 output (dict) - dictionary of all the axis objects of the
— format {axisName: axisObject}

169 nnn

L70 # create the driver

171 driver = AxisDummyDriver (**driverConfig)

172 output = {}

173 # create the shims

174 for axisConfig in shims:

175 # verify the axix is compatible with the driver

176 if axisConfig.getClassName () in AxisDummyDriver.validAxes:

177 module = getattr (axes, axisConfig.getClassName ())

178 kwargs = axisConfig.getArguments ()

179 # add driver to input kwargs

180 kwargs [”driver”]| = driver

181 output [axisConfig.getName ()] = module(**kwargs)

182

183 else:

184 raise ValueError(

185 "The axis {} is not a valid axis to use with the

< DummyDriver” . format (

166

www.manharaa.com

186 axisConfig.getClassName ()

187)
188)
189 return output

A9 Axeslnterface.py

1 from src.process_ interfaces import ABC_ Interface

2 import src.hardware.axes.drivers as drivers

3 import traceback, sys

4 from src.data_structs import ErrorState

5 from src.data_structs.internal messages import CommandStatus, Shutdown
6 from threading import Thread

7 from src.data_structs.internal messages.hardware import (

8 AxesNames,

9 AxisAcceleration ,

10 AxisDeceleration ,

11 AxisCalibratedPosition ,

12 AxisGoToCalibratedPosition ,

13 AxisHome ,

14 AxislInitialize |,
15 AxisMaxPosition ,
16 AxisMinPosition ,
17 AxisReset ,

18 AxisPosition ,

19 AxisVelocity ,

20)

21 from src.data_ structs.internal messages.controllers import

— SaveCalibratedPositionToConfig

22 from src.data_structs import MessageType

23

167

www.manharaa.com

25 class AxesInterface (ABC_ Interface):

26 nnr

27 Interface for the process that controls all hardware axes.

28

29 Documentation for undocumented functions can be found inside the
< Interface abstract base class.

30

31 Attributes:

32 axisShims (dict): dictionary of all of the axis classes. The

— keys are the name of the axis and the
33 values are the axis object.
34 validSubConfigs (List): list of the valid classes that can be
— configured. Used mainly

35 for the documentation of the configuration manager.

36 nr

37

38 axisShims = {}

39 validSubConfigs = [”AxisDummyDriver, GrblDriver”|

40

41 def __init__ (self, inQueue, outQueue):

42 no

43 Sets the input and output queues

44

45 Parameters:

46 inQueue (Queue): input queue from the flask process

47 outQueue (Queue): output queue from the flask process

48 nr

49 super () .__init__ (inQueue, outQueue)

50

51 def setupAxes(self, axisDrivers=[]):

52 no

168

www.manharaa.com

53 Initializes all of the axis and driver objects for the
— configuration
54 specified in the config file.
55
56 All axis objects will be stored in self.axisShims.
57
58 Parameters:
59 axisDrivers (list of AxesDriverConfig): passed in
— configuration of the axis
60 nrr
61 # for each driver
62 for driverConfig in axisDrivers:
63 # get the driver class object
64 module = getattr(drivers, driverConfig.getClassName())
65 # use the driver to create the axes objects
66 config , shims = driverConfig.getArguments ()
67 axes = module. createAxes (config, shims)
68 # save them to AxeslInterface.axes
69 for name, obj in axes.items():
70 self.axisShims [name] = obj
71
72 def run(self, axisDrivers=[], debug=False):
73 no
74 Starting point for the AxesInterface Process.
75
76 Parameters:
7 axisDrivers (list) - configuration options for each driver
— and the axes that are
78 attached to it. Each item in the list should be a
— dictionary with the config
79 params of a driver, with one of the keys containing a
— list of all the config

169

www.manharaa.com

80 params for all the axes that will be using the driver.
< See docs/Config_Files.md
81 for more details.
82 nnn
83 self.debug = debug
84 self.setupAxes(axisDrivers)
85 self . processMessages ()
86
87 def messageLogic(self, payload):
88 if self.debug:
89 print (" AxesInterface received payload: ”, payload)
90 try:
91 if isinstance(payload, AxesNames):
92 self.sendMessage (
93 CommandStatus (
94 payload . uuid ,
95 payload .sender ,
96 returnVal=list (self.axisShims.keys()),
97)
98)
99
100 elif isinstance(payload, AxisInitialize):
101 if payload.type = MessageType. get:
102 self .sendResponseMessage (
103 payload . uuid ,
104 payload .sender ,
105 self .axisShims [payload.axis]. getInitialized ,
106)
107 else:
108 self .sendResponseMessage (
109 payload . uuid ,
payload .sender ,

170

www.manharaa.com

111 self.axisShims [payload.axis].initialize ,

112)

113

114 elif isinstance (payload, AxisHome):

115 if payload.type = MessageType. get:

116 self.sendResponseMessage (

117 payload . uuid ,

118 payload .sender ,

119 self.axisShims [payload. axis].getHomed,

120)

121 else:

122 self .sendResponseMessage (

123 payload.uuid, payload.sender, self.axisShims]
< payload.axis].home

124)

125

126 elif isinstance (payload, AxisPosition):

127 if payload.type = MessageType. get:

128 self.sendResponseMessage (

129 payload . uuid ,

130 payload .sender ,

131 self.axisShims [payload.axis]. getPosition ,

132)

133 else:

134 self.sendResponseMessage (

135 payload . uuid ,

136 payload .sender ,

137 self .axisShims [payload.axis].setPosition ,

138 payload . pos,

139 payload .mode,

140)

171

www.manharaa.com

142
143
144
145
146
147

148
149
150
151
152
153

154
155
156
157
158

159
160
161
162
163
164
165
166

elif isinstance(payload, AxisCalibratedPosition):

if payload.type = MessageType. get:
self.sendResponseMessage (
payload . uuid ,
payload .sender ,
self .axisShims [payload.axis].
— getCalibratedPosition ,
)
else:
self.sendResponseMessage (
payload . uuid ,
payload .sender ,
self .axisShims [payload.axis].
— setCalibratedPosition ,
)
update the config file
self.sendMessage (
SaveCalibratedPositionToConfig (

payload.axis, self.axisShims|[payload.axis].

— getPosition ()

elif isinstance (payload, AxisGoToCalibratedPosition):

self.sendResponseMessage (
payload . uuid,

payload .sender ,

self.axisShims [payload.axis].goToCalibratedPosition

-

172

www.manharaa.com

170 self .sendResponseMessage (
171 payload . uuid ,
172 payload .sender ,
173 self.axisShims [payload.axis]. getMaxPosition
174)
175
176 elif isinstance(payload, AxisMinPosition):
177 self .sendResponseMessage (
178 payload . uuid ,
179 payload.sender ,
180 self .axisShims [payload.axis]. getMinPosition ,
181)
182
183 elif isinstance(payload, AxisAcceleration):
184 if payload.type = MessageType. get:
185 self.sendResponseMessage (
186 payload . uuid ,
187 payload .sender ,
188 self.axisShims [payload.axis]. getAcceleration ,
189)
190 else:
191 self.sendResponseMessage (
192 payload . uuid ,
193 payload .sender ,
194 self .axisShims[payload.axis].setAcceleration ,
195 payload . accel
196)
197
198 elif isinstance(payload, AxisDeceleration):
199 if payload.type = MessageType. get:
200 self .sendResponseMessage (
payload . uuid ,

173

www.manharaa.com

202 payload .sender ,

203 self .axisShims [payload.axis]. getDeceleration ,
204)

205 else:

206 self .sendResponseMessage (

207 payload . uuid ,

208 payload .sender ,

209 self .axisShims [payload.axis].setDeceleration ,
210 payload . decel |

211)

212

213 elif isinstance (payload, AxisVelocity):

214 if payload.type = MessageType. get:

215 self.sendResponseMessage (

216 payload . uuid ,

217 payload .sender ,

218 self.axisShims [payload.axis]. getVelocity ,
219)

220 else:

21 self.sendResponseMessage (

22 payload . uuid ,

223 payload .sender

P24 self.axisShims [payload.axis].setVelocity ,
225 payload . vel ,

226)

P27

228 elif isinstance (payload, AxisReset):

229 self .sendResponseMessage (

230 payload . uuid,

231 payload .sender ,

232 self .axisShims [payload.axis].reset_driver,

174

www.manharaa.com

234

235 except Exception as e:

236 self.sendMessage (

P37 CommandStatus (

238 payload . uuid ,

239 payload .sender ,

240 errorState=ErrorState.error ,

241 errorMsg="{}: {}”.format(type(e).__name , e.args),
D42 traceback=traceback.print_exc(),
P43)

h44)

245

P46 def shutdown(self):

AT super () .shutdown ()

248 print ("Axes Interface Shutdown”)

A.10 PrintJobController.py

1 from src.process_interfaces import ABC_ Interface

2 import glob

3 import os

4 from printjob import getPrintJob

5 from threading import Thread, Lock, Event

6 from src.data_structs.internal messages import Shutdown, CommandStatus
7 from src.data_structs import ErrorState, MoveMode

8 from src.errors import PrintJobCommandError

9 import traceback

10 from functools import wraps

11 import time

12 from src.data_structs import PrintJobState as State

13 from src.data_structs.internal_messages.controllers import (

175

www.manharaa.com

15 PrintJobStop ,

16 PrintJobPause ,

17 PrintJobNext ,

18 PrintJobIsRunning ,

19 PrintJobState ,

20 PrintJobGetCurrentImage ,
21 PrintJobGetNumberOfLayers ,
22 PrintJobGetCurrentLayerNumber ,
23 PrintJobRunTime ,

24 PrintJobElapsedTime ,

25 PrintJobLogMessage ,

26 PrintJobFolderLocation ,

27)

28 from src.data_structs.internal messages import ABC_Message

29 from src.data_structs.internal messages.hardware import (

30 AxislInitialize ,

31 AxisPosition ,

32 AxisHome ,

33)

34 from src.data_structs.internal messages.hardware import (
35 LightEnginelmage ,

36 LightEnginelnitialize ,

37 LightEngineBrightness ,

38 LightEnginePerformExposure

39)

40

41

42 class PrintJobController (ABC_Interface):

43 nny

44 Interface for the process the runs a print job.
45

176

www.manharaa.com

46 Before messing with this code, make sure to read up on how mutexes
— and the threading.Lock class work.
47 Otherwise, if you use the stateLock wvariable incorrectly , you can
— get some nasty shared data bugs, or
48 cause the entire controller to lock up.
49
50 Documentation for undocumented functions can be found inside the
— Interface abstract base class.
51
52 Attributes:
53 current_state (PrintJobState) - state of the print job
54 nny
55
56 _stateLock = Lock()
57 _currentState = State.idle
58 _sleep__duration = 0.1
59
60 def __init__ (self, inQueue, outQueue):
61 nry
62 Sets the input and output queues
63
64 Parameters:
65 inQueue (Queue): input queue from the flask process
66 outQueue (Queue): output queue from the flask process
67 debug (bool): include debug printout
68 lightEngineName (str): name of the light engine to send
— commands to
69 axisName (str): name of the axis to use as the build
— platform
70 topPosition (float): position to move the build platform to
— when not in use.

177

www.manharaa.com

71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

def

swapMinMax (bool): changes which direction is considered

— down.
super () .__init__ (inQueue, outQueue)
logging stuff
self .logEvent = Event ()
self .logQLength = 0
self .logMsg =
self .resetPrintJobSettings ()

run (
self |

by

lightEngineName="",
axisName="",
topPosition=0,
bottomPosition=0,
swapMinMax=False ,
debug=False ,

99

tempDir="" |

9999 99

Validating if the input parameters are
— ConfigManager.

self.debug = debug

self .tempDir = tempDir

self .lightEngineName = lightEngineName

self .axisName = axisName

self.topPosition = topPosition

self.bottomPosition = bottomPosition

self .swapMinMax = swapMinMax

self .nextState = None

178

correct

is

left to the

www.manharaa.com

101 # start the message threads
102 Thread (target=self.stateMachine , name="print_job_state_machine”
<).start ()
103 self.processMessages ()
104
105 def messageLogic(self, payload):
106 if self.debug:
107 print ("PrintJobController received payload: 7, payload)
108 try:
109 if isinstance(payload, Shutdown):
110 self .shutdown ()
111 elif isinstance (payload, PrintJobIsRunning):
112 self .sendResponseMessage (
113 payload .uuid, payload.sender, self.getlsRunning,
114)
115 elif isinstance(payload, PrintJobState):
116 self.sendResponseMessage (
117 payload.uuid, payload.sender, self.
— getCurrentStateName
118)
119 elif isinstance (payload, PrintJobFolderLocation):
120 self.sendResponseMessage (
121 payload . uuid,
122 payload .sender ,
123 self . handleSetFolderLocationMessage ,
124 payload . path
125)
126 elif isinstance(payload, PrintJobStart):
127 self .sendResponseMessage (
128 payload.uuid, payload.sender, self.
— handleStartMessage

179

www.manharaa.com

130 elif isinstance(payload, PrintJobStop):

131 self .sendResponseMessage (

132 payload .uuid, payload.sender, self.
— handleStopMessage

133)

134 elif isinstance(payload, PrintJobPause):

135 self .sendResponseMessage (

136 payload .uuid, payload.sender, self.
— handlePauseMessage

137)

138 elif isinstance (payload, PrintJobNext):

139 self .sendResponseMessage (

140 payload .uuid, payload.sender, self.
— handleNextMessage

141)

142 elif isinstance(payload, PrintJobGetCurrentImage):

143 self.sendResponseMessage (

144 payload .uuid, payload.sender, self.getCurrentlmage,
— payload.publisher

145)

146 elif isinstance (payload, PrintJobGetNumberOfLayers):

147 if self.printjob is not None:

148 self.sendResponseMessage (

149 payload.uuid, payload.sender, self.printjob.

— getNumberOfLayers

150)

151 else:

152 raise PrintJobCommandError(”No print job currently
<> being executed.”)

153 elif isinstance (payload, PrintJobGetCurrentLayerNumber):

154 if self.printjob is not None:

55 self .sendResponseMessage (

180

www.manharaa.com

156 payload .uuid, payload.sender, self.
— getCurrentLayerNumber
157)
158 else:
159 raise PrintJobCommandError(”No print job currently
< being executed.”)
160 elif isinstance (payload, PrintJobRunTime):
161 if self.printjob is not None:
162 self .sendResponseMessage (
163 payload .uuid, payload.sender, self.
— getPrintJobRunTime
164)
165 else:
166 raise PrintJobCommandError(”No print job currently
< being executed.”)
167 elif isinstance(payload, PrintJobElapsedTime):
168 if self.printjob is not None:
169 self .sendResponseMessage (
170 payload .uuid, payload.sender, self.
— getElapsedTime
171)
172 else:
173 raise PrintJobCommandError(”No print job currently
< being executed.”)
174 elif isinstance(payload, PrintJobLogMessage):
175 self.sendResponseMessage (payload.uuid, payload.sender,
— self.getLogMessage)
176 except Exception as e:
177 self.sendMessage (
178 CommandStatus (
179 payload . uuid ,
80 payload .sender ,

181

www.manharaa.com

181 errorState=ErrorState.error ,

182 errorMsg="{}: {}”.format(type(e).__name , e.args),

183 traceback=traceback.print_exc (),

184)

185)

186

187 @property

188 def currentState(self):

189 R

190 Getter for currentState

191

192 Isn’t wrapped in self._ stateLock because that lock often needs

— to

193 be used over larger sections of code.

194 no

195 return self. currentState

196

197 @currentState.setter

198 def currentState(self , newState):

199 nr

200 Setter for currentState

201

202 Also updates the previous state variable

203 R

204 if isinstance (newState, State):

205 self. currentState = newState

206 else:

207 raise ValueError(”Print Job state must be of type
— PrintJobState”)

208

209 def getCurrentStateName(self):

210 7

182

www.manharaa.com

211 Gets the current state name

212

213 Returns:

214 str - name

215 nny

D16 with self. stateLock:

217 return self.currentState.name

218

219 def getCurrentIlmage(self , publisher):

220 nny

D21 Gets the path to the image that the light engine is currently

— using.

22 Returns a blank string if the print job is not running.

223

224 Parameters:

225 publisher (PublisherType) - what kind of getter message to
— send to the light engine

226

227 Returns:

D28 str - path to image if running, blank otherwise

229 R

230 if self.getIsRunning():

231 output = self.sendCommand (

232 LightEnginelmage (self .lightEngineName , publisherType=

< publisher),

233 self.getIsRunning ,

234)

235 # return self.sendCommand (LightEnginelmage (self.
< lightEngineName))

236 return output if output is not None else 77

237 return 77

183

www.manharaa.com

239 def getIsRunning(self):

240 no

241 Gets if a print job is currently running

D42

243 Returns:

244 bool

P45 nrr

D46 with self. stateLock:

247 return self.currentState != State.idle

248

249 def getElapsedTime(self):

250 nn

251 Gets the elapsed time for the print job

252

253 Returns:

254 int

255 nn

256 return self.elapsedTime * le-3 # convert from ms to seconds

257

258 def handleSetFolderLocationMessage (self , path):

259 no

260 Handles setting the file path of the print job folder. Checks
— if it is wvalid

261 nr

262 if os.path.exists(path):

263 files = glob.glob(path + 7*7)

264 if path + ”print_settings.json” in files:

265 self.printJobFilePath = path

266 return

D67 raise PrintJobCommandError (

268 "Print job folder {} does not contain a print_settings.

json file”.format (

184

MJLL“..-MZ I_‘ILLI
Y

www.manharaa.com

269 path
270)
271)
72 raise ValueError(”Folder path {} does not exist”.format (
< path))
273
R74 def handleStartMessage (self):
275 R
276 Handles state changes when a start message is received
277
278 Passes errors back to the caller function
279 R
280 # the state must stay the same for this entire transaction
P81 with self. stateLock:
282 if self.currentState =— State.idle:
283 # setup and validate the print job file
84 self .printjob = getPrintJob(
285 self .printJobFilePath, printJobSettingsFileName="
— print_settings.json”,
286)
D87 # if hardware is initialized , start leveling process
P88 if self.getInitHardware():
289 self.currentState = State.start_leveling
290 # if init fails , raise error
291 else:
292 self .setInitHardware (set=True)
P93 self.currentState = State.start_leveling
294 else:
295 # send the error back to the router
296 raise PrintJobCommandError(”Start command only starts
< print jobs”)

185

www.manharaa.com

298 def handleStopMessage (self):

299 # the state must stay the same for this entire transaction

300 with self. stateLock:

301 if self.currentState = State.start_leveling:

302 self . currentState = State.idle

303 elif self.currentState = State.leveling:

304 self.currentState = State.move_bp_top

305 elif self.currentState = State.finish_leveling:

306 self.currentState = State.idle

307 elif self.currentState = State.move_bp:

308 self.currentState = State.move_bp_top

309 elif self.currentState = State.expose:

310 self.currentState = State.move_bp_ top

311 elif self.currentState = State.pause:

312 self.currentState = State.move_bp_top

313 elif self.currentState = State.move bp_top:

314 pass # when this state finishes executing, it goes to

— idle

315 else:

316 # send the error back to the router

317 raise PrintJobCommandError (

318 "Stop command does not work in the {} state”.format

< (self.currentState)

319)

320

321 def handlePauseMessage(self):

322 # the state must stay the same for this entire transaction

323 with self. stateLock:

324 if self.currentState = State.pause: # unpause

325 self.currentState = self.nextState

326 # save what state was next so that we can go to that state
— when we unpause

186

www.manharaa.com

327 # self.nextState = self.currentState

328 elif self.currentState =— State.move_bp:

329 self.currentState = State.pause

330 # check if the print job as complete

331 if self.currentLayerNum > self.printjob.

— getNumberOfLayers () :

332 self .nextState = State.move_bp_top

333 else:

334 self .nextState = State.expose

335 elif self.currentState = State.expose:

336 self.currentState = State.pause

337 self .nextState = State.move bp

338 else:

339 # send the error back to the router

340 raise PrintJobCommandError (

341 "Pause command only works during the print cycle.

— Try using stop.”

342)

343

344 def handleNextMessage (self):

345 # the state must stay the same for this entire transaction
346 with self. stateLock:

347 if self.currentState = State.start_leveling:
348 self .currentState = State.leveling

349 elif self.currentState = State.leveling:

350 self .currentState = State.finish_leveling
351 elif self.currentState = State.finish_leveling:
352 self .currentState = State.move_bp

353 else:

354 # send the error back to the router

355 raise PrintJobCommandError (

187

www.manharaa.com

356

357
358
359
360
361
362
363
364
365

366

367
368
369

370
371

372
373
374
375
376

377

def stateMachine(self):

9999 99

State machine thread that drives a print job

9999 99

while not self.stopEvent.is_set():

"Next command does not work in the {} state”.format

< (self.currentState)

with self. stateLock:
just get the state long enough to know what task to
— perform

this also allows for checking for state changes mid

— task
state = self.currentState
if state = State.start_leveling:

wait until user acknowledges the warning with a next
<> message
print (
"\nWARNING!: make sure that the printing area is
— clear and that the build platform is not
< connected to the Z axis!”
)
print (7 send ’next’ to acknowledge\n”)
self . waitForStateChange (state)
elif state = State.leveling:
self .moveAxis(self.bottomPosition, MoveMode. absolute)
print (”"\nSend ’'next’ after the build platform has been
< leveled.\n”)
self.waitForStateChange (state)

elif state = State.finish leveling:

self .moveAxis(self.topPosition, MoveMode. absolute)

188

www.manharaa.com

381 print (”"\nSend ’'next’ when you are ready to run the

— print job.\n”)

382 self . waitForStateChange (state)
383 with self. stateLock:
384 # only send build platform to the bottom if stop

— command has not been sent
385 if self.currentState = State.move_ bp:
386 self .moveAxis(self.bottomPosition, MoveMode.

< absolute)

387 elif state = State.move_ bp:
388 # stop if out of layers
389 if self.currentLayerNum > self.printjob.

— getNumberOfLayers () :

390 with self. stateLock:

391 self.currentState = State.move_bp_top
392 continue

393 # move build platform for the next layer

394 self.currentLayer = self.printjob.getLayer(self.

< currentLayerNum)

395 self.currentLayerNum += 1

396 self . updateBuildPlatformPosition ()

397 # update to the expose state

398 with self. stateLock:

399 # check if paused

100 if self.currentState != State.pause:
101 self.currentState = State.expose
102 else:

103 self .nextState = State.expose
104 elif state = State.expose:

105 # update state to finish the print job
106 self .performExposures ()

107 with self. stateLock:

189

www.manharaa.com

108 # check if paused

109 if self.currentState != State.pause:

110 self.currentState = State.move_bp

411 else:

112 self .nextState = State.move_bp

113 elif state = State.pause:

114 self . waitForStateChange (state)

115 # time.sleep(self._sleep_duration)

116 # with self._ stateLock:

417 7# if self.currentState != State.pause:

118 # self.currentState = self.nextState

119 elif state = State.move bp_ top:

120 self .moveAxis(self.topPosition, MoveMode. absolute)

121 self .resetPrintJobSettings ()

122 with self._stateLock:

123 self.currentState = State.idle

124 else: # idle state

125 time.sleep (self._sleep_duration)

126

127 def performExposures(self):

128 no

129 Helper function to do all of the exposures on a single layer.

130 nr

131 for exposure in self.currentLayer.exposures:

132 # set the light engine settings

133 if exposure.power != self.power:

134 self .power = exposure.power

135 self .sendCommand (

136 LightEngineBrightness (

137 self .lightEngineName , set=True, brightness=self
< .power

190

www.manharaa.com

139)

140 # wait before exposure

141 time . sleep (exposure.wait__before)

142 self.elapsedTime 4+= exposure.wait__before

143 # set the image

144 self .sendCommand (

145 LightEnginelmage (

146 self .lightEngineName ,

447 set=True,

148 image=self.printJobFilePath + ”slices/” + exposure.
— image,

149)

150)

151 # expose the image

152 self .sendCommand (

153 LightEnginePerformExposure (self .lightEngineName ,

<> exposure.exposure_ time)

154)

1455 self .elapsedTime += exposure.exposure_time

156 # wait after exposure

457 time.sleep (exposure.wait__after)

158 self .elapsedTime 4= exposure.wait_after

159

160 def resetPrintJobSettings(self):

161 nry

162 Helper function to reset all of the settings states for the

— axis and light engine.

163 nnn

164 self .printjob = None
165 self.elapsedTime = 0
166 self .exposure_time = 0

191

www.manharaa.com

168 self.relative_ focus_ position = 0

169 self.wait__before__exposure = 0

470 self . wait_after_exposure = 0

471 self.logMsg = 77

472 self .currentLayerNum = 1

173 self .printJobFilePath = 77

174 self . logEvent. clear ()

175 self.logQLength = 0

176

477 def updateBuildPlatformPosition(self):

178 R

479 Moves the build platform based on the config in the layer
180 nn

181 # wait before moving bp

182 time.sleep (self.currentLayer.init_wait)

183 self .elapsedTime 4= self.currentLayer.init_wait

184 # move up

185 upDistance = self.currentLayer.distance_up * (-1 if self.

— swapMinMax else 1)

186 self .moveAxis(upDistance, MoveMode. relative)

187 # wait time at top

188 time.sleep (self.currentLayer.up_wait)

189 self .elapsedTime 4= self.currentLayer.up_ wait

190 # move to the thickness height

191 downDistance = (

1492 self.currentLayer.thickness * (-1 if self.swapMinMax else

5 1) * le-3

193 - upDistance

194)

195 self . moveAxis(downDistance, MoveMode. relative)
196 # wait before moving on

197 time.sleep (self.currentLayer. final wait)

192

www.manharaa.com

198 self.elapsedTime 4= self.currentLayer.final wait

199

500 def shutdown(self):

H01 self.stopEvent.set ()

502 print ("PrintJobController shutdown”)

H03

H04 def waitForStateChange (self , state):

505 nr

06 Helper function to help states stall

07

08 Parameters:

509 state (PrintJobState) - state to compare the current state
— against

510 nr

h11 while not self.stopEvent.is_ set():

512 with self. stateLock:

513 if state != self.currentState:

514 break

515 time.sleep (self. sleep duration)

516

517 def moveAxis(self , pos, mode):

H18 nn

b19 Helper function for moving the axis

520

b21 Parameters:

522 pos (float) - position to move the axis to

523 mode (MoveMode) - should the pos be interpreted absolutely
— or relatively

h24

525 Return:

26 bool - success or failure to move

b27 v

193

www.manharaa.com

H28 uuid = self.sendMessage (

529 AxisPosition (self.axisName, set=True, position=pos, mode=
— mode)

530)

h31 response = self.waitForResponse (uuid)

32 return response.state != ErrorState.error

b33

h34 def getlnitHardware (self , set=False):

535 R

36 Helper function that checks if the hardware is initialized

537

b38 Initializes all hardware concurrently , using threads.

39

540 Returns:

41 bool - success

Hh42 nry

543 axisResult = None

h44 lightEngineResult = None

H45 # create hardware threads

546 if set:

47 axisInitThread = Thread(target=self.initAxis)

h48 lightEnginelnitThread = Thread (target=self.initLightEngine)

49 else:

550 axisInitThread = Thread(target=self.getAxisInit, args=(
— axisResult ,))

51 lightEnginelnitThread = Thread (

552 target=self.getLightEnginelnit , args=(lightEngineResult

=)

53)

554 # start threads

b55 axisInitThread.start ()

www.manharaa.com

b5H7 # wait for threads to join

H58 axisInitThread. join ()

559 lightEnginelnitThread . join ()

60 return axisResult and lightEngineResult

H61

H62 def setInitHardware(self , set=False):

H63 nrr

h64 Helper function that initializes the hardware
Hh65

H66 Initializes all hardware concurrently , using threads.
b67 Returns:

Hh68 bool - success

H69 nrr

b70 try:

h71 axisResult = None

72 lightEngineResult = None

h73 # create hardware threads

H74 axisInitThread = Thread(target=self.initAxis)
b75 lightEnginelnitThread = Thread (target=self.initLightEngine)
h76 # start threads

b 77 axisInitThread.start ()

H78 lightEnginelnitThread . start ()

79 # wait for threads to join

580 axisInitThread . join ()

81 lightEnginelnitThread . join ()

082 return True

H83 except Exception as e:

h84 print (str(e))

85 return False

H86

87 def getLightEnginelnit(self, result):

H88 v

195

www.manharaa.com

89 Gets light engine init state

590

91 Parameters:

592 result (bool) - return value

593

594 Returns:

595 None - return val is set to result

596 nnn

b97 # check if the hardware is already iniitialized

98 leGetInitUUID = self.sendMessage(LightEnginelnitialize (self.
<~ lightEngineName))

99 leResponse = self.waitForResponse (leGetInitUUID)

6500 if leResponse.state =— ErrorState.error:

6501 if self.debug:

602 raise ValueError(leResponse.errorMsg)

603 else:

604 raise ValueError(leResponse.traceback)

605 result = leResponse.returnVal

606

607 def getAxisInit(self, result):

608 nen

509 Gets the init state of the build platform

610

6511 Parameters:

612 result (bool) - return value

613

614 Returns:

615 None - return val is set to result

616 nnn

517 # check if the hardware is already initialized

618 axisGetInitUUID = self.sendMessage(AxisInitialize (self.axisName

196

www.manharaa.com

619 axisResponse = self.waitForResponse (axisGetInitUUID)

620 if axisResponse.state = ErrorState.error:

621 if self.debug:

522 raise ValueError (axisResponse.errorMsg)
623 else:

624 raise ValueError(axisResponse.traceback)
625 result = axisResponse.returnVal

626

627 def initAxis(self):

628 nrr

629 Initializes axis hardware

630 nnn

631 axisSetInitUUID = self.sendMessage(AxisInitialize (self.axisName

— , set=True))

632 axisResponse = self.waitForResponse (axisSetInitUUID)

633 if self.debug:

634 print ("Print Job - axis response: ”, axisResponse)

635 if axisResponse.state = ErrorState.error:

636 if self.debug:

637 raise ValueError(axisResponse.errorMsg)

638 else:

639 raise ValueError(axisResponse.traceback)

640 # home the axis

641 axisHomeUUID = self.sendMessage (AxisHome (self.axisName, set=
— True))

642 axisResponse = self.waitForResponse (axisHomeUUID)

643 if self.debug:

644 print ("Print Job - axis response: 7, axisResponse)

645 if axisResponse.state = ErrorState.error:

646 if self.debug:

647 raise ValueError(axisResponse.errorMsg)

197

www.manharaa.com

649 raise ValueError(axisResponse.traceback)

650

651 def initLightEngine(self):

652 nrr

653 Initializes light engine hardware

654 no

655 leSetInitUUID = self.sendMessage (

656 LightEnginelnitialize (self.lightEngineName, set=True)

657)

658 leResponse = self.waitForResponse (leSetInitUUID)

659 if leResponse.state = ErrorState.error:

660 if self.debug:

661 raise ValueError (leResponse.errorMsg)

662 else:

663 raise ValueError(leResponse.traceback)

664

665 def getPrintJobRunTime (self):

666 nrr

667 Iterates through all of the layers in the print job and

— calculates the

668 total time the print job will take.

669

670 Returns:

671 float - number of seconds it will take the print to
— complete

672 nrr

673 if self.printjob is not None:

674 totalTime = 0

675 for i in range(self.printjob.getNumberOfLayers()):

676 layer = self.printjob.getLayer(i + 1)

677 totalTime += layer.init_wait

678 totalTime 4= layer.up_ wait

198

www.manharaa.com

679
680
631
632
683
634
635
686

687
688

700
701
702
703

704

705

def

def

totalTime 4= layer.final_ wait
for exposure in layer.exposures:
totalTime += exposure.exposure_time
totalTime += exposure.wait_before
totalTime += exposure.wait_after
return (
totalTime / 1000
) # total time is in milliseconds. Divide by 1000 to get
— seconds
else:
raise PrintJobCommandError(”No print job currently being

— executed.”)

getCurrentLayerNumber(self):

9999 99

Gets the current layer number

Returns:

int - current layer number
99999
return self.currentLayerNum - 1

getLogMessage (self):

9999 99

Get log message about the state of the print job controller

Since it is up to the front end to ask for log messages, there
— is potential

for this function to be spammed. Best practice is to queue up
— all calls to this

function and periodically return a single log message to all of

— the calls at the

199

www.manharaa.com

706 same time.

707

708 Returns:

709 str - log message

710 nny

711 with self. stateLock:

712 # increment queue size

713 self .logQLength += 1

714 # wait for new log message

715 self . logEvent. wait ()

716 with self. stateLock:

17 # clear the log event if last call in the queue

718 if self.logQLength =— 1:

719 self .logEvent. clear ()

720 # take function call off of the queue

721 self.logQLength -= 1

722 return self.logMsg

723

724 def sendCommand(self , message, cancelCondition=None):

725 nr

726 Sends a message and returns the result. Also handles errors.

27

728 Parameters:

729 message (Message) - message to send to the router

730 cancelCondition (method) - method that returns a boolean
— value if to continue or not

731 True => keep waiting; False => cancel the command

732

733 Returns:

734 any - return value depends on the message

735 None - returned if the command was cancelled

736 7

200

www.manharaa.com

737 if isinstance (message, ABC_ Message):

— to stop

< else sts.errorMsg)

753 return sts.returnVal

738 uuid = self.sendMessage (message)

739 if cancelCondition is None:

740 sts = self.waitForResponse (uuid)

741 else:

742 while cancelCondition ():

743 sts = self.waitForResponse (uuid, timeout=0.1)

744 if sts is not None:

745 break

746 # check if the cancelEvent is was caused the while loop

747 if not cancelCondition ():

748 return None

749 if sts is None:

750 return None

751 if sts.state != ErrorState.none:

752 raise PrintJobCommandError(sts.traceback if self.debug

A.11 server.py

1 from flask import Flask, render_template, Response,
2 from flask restplus import Api, Resource

3 from flask_ cors import CORS

4 import copy

5 import time

6 import uuid

7 import sys

8 from threading import Thread, Lock, Event

port ErrorState, JobQEntry

201

9 from src.data_structs.internal messages import CommandStatus

request , Blueprint

www.manharaa.com

11 from src.errors import MessageError

12 from src.webserver import flaskapp as app

13 from src.data_structs import Configlnterfaces
14

15cm = None

16 config = None

17 debug = False

18 router = None

19 tempDir = None

20

21# gets rid of an annoying error message in the web
22# console when running development server

23 cors = CORS(app, resources={r”/api/*”: {7origins”: "*"}})

24

25

26 def initAxesAPI(api):

27 nrr

28 Initializes all of the api endpoints for the axes module

29

30 Parameters:

31 api (API) - flask_ restplus object that handles the api
— endpoints

32 nrr

33 try:

34 # check if the axes has been configured. If not, then don’t

35 # register its api endpoints

36 global cm

37 cm. getConfig(Configlnterfaces . Axes)

38 except Exception as e:

39 print (str(e))

40 return

202

www.manharaa.com

42
43
44
45
46
47
48
49
50
51
52
53
o4
55
56
o7
58
59
60
61
62
63
64
65

67
68

69
70
71

66 def

from
from
from
from
from
from
from
from
from

from

api
api.
api.
api.
api
api.
api.
api
api.
api.

api

src.

src

src.

src.

src

src.

src.

src.

sSrc

src.

.webserver.

.webserver.

webserver

.webserver.

webserver

webserver .

webserver .

webserver .

webserver .

webserver .

api.

api

api.

api.

api

.api.

api.

api

api

.api.

hardware .
.hardware.
hardware.
hardware .
.hardware.
hardware.
hardware.
.hardware.
.hardware.

hardware.

.add__namespace (axesNames)

add__namespace(axesInit)

add__namespace (axesHome)

add_namespace(axesPosition)

axesMin)

add__namespace (axesMax)

axes

axes

axes

axes

axes

axes

axes

axes

axes

axes

.add__namespace (axesAcceleration)

add namespace (axesDeceleration)

add__namespace (axesVelocity)

(
(
(
(
(
namespace (
(
(
(
(
(

initPrintJobAPI(api):

2799

Initializes

.add_namespace (axesReset)

— based on which ones have been

configured .

Parameters:

ol Ll Zyl_i}sl

203

import
import
import
import
import
import
import
import
import

import

.add_namespace(axesCalibratedPosition)

add

axesNames
axeslInit
axesHome

axesPosit

axesCalibratedPosition

axesMax ,

axesAcceleration
axesDeceleration

axesVelocity

axesReset

all of the api endpoints for the print job controller

ion

axesMin

www.manharaa.com

72

73
74
75

76
77
78
79
80
81
82
83
84
85
86
87
88

89

90

91

92

93

94

api (API) - flask restplus object that handles the api

— endpoints

99999

try:

check if the print job controller has been configured. If not

— , then don’t
register its api endpoints
global cm
cm. getConfig (Configlnterfaces.PrintJob)
except Exception as e:
print (str(e))

return

from src.webserver.api.controllers.printJob

from src.webserver.api.controllers.printJob

from src.webserver.api.controllers.printJob

from src.webserver.api.controllers.printJob

from src.webserver.api.controllers.printJob

from src.webserver.api.controllers.printJob
— printJobIsRunning

from src.webserver.api.controllers.printJob
— printJobValidStates

from src.webserver.api.controllers.printJob
— printJobGetCurrentIlmage

from src.webserver.api.controllers.printJob
— printJobGetCurrentImageOnChange

from src.webserver.api.controllers.printJob
— printJobGetCurrentImagePeriodic

from src.webserver.api.controllers.printJob
— printJobGetCurrentLayerNumber

from src.webserver.api.controllers.printJob

— printJobGetNumberOfLayers

204

import

import

import

import

import

import

import

import

import

import

import

import

printJobStart
printJobPause
printJobNext
printJobStop
printJobState

www.manharaa.com

95 from src.webserver.api.controllers.printJob import printJobRunTime
96 from src.webserver.api.controllers.printJob import

— printJobElapsedTime
97 from src.webserver.api.controllers.printJob import

— printJobLogMessage

98 from src.webserver.api.controllers.printJob import printJobUpload
99

100 api.add_namespace(printJobStart)

101 api.add_namespace(printJobPause)

102 api.add_namespace(printJobNext)

103 api.add_namespace(printJobState)

104 api.add_namespace(printJobStop)

105 api.add_namespace(printJobIsRunning)

106 api.add_namespace(printJobValidStates)

107 api.add_namespace(printJobGetCurrentLayerNumber)

108 api.add_namespace(printJobGetCurrentImage)

109 api.add_namespace(printJobGetCurrentImageOnChange)

110 api.add_namespace(printJobGetCurrentImagePeriodic)

111 api.add_namespace (printJobGetNumberOfLayers)

112 api.add_namespace (printJobRunTime)

113 api.add_namespace(printJobElapsedTime)

114 api.add_namespace(printJobLogMessage)

115 api.add_namespace(printJobUpload)

116

117

118 def initLightEnginesAPI(api):

119 nny

120 Initializes all of the api endpoints for the light engines module
121

122 Parameters:

123 api (API) - flask_ restplus object that handles the api

205

www.manharaa.com

124 nny

125 try:

126 # check if the light engines has been configured. If not, then

— don’t

127 # register its api endpoints

128 global cm

129 cm. getConfig (Configlnterfaces.LightEngines)

130 except Exception as e:

131 print (str(e))

132 return

133

134 from src.webserver.api.hardware.light engines import
— lightEnginesInit

135 from src.webserver.api.hardware.light engines import
— lightEnginesReset

136 from src.webserver.api.hardware.light engines import
— lightEngineNames

137 from src.webserver.api.hardware.light engines import
— lightEnginesBrightness

138 from src.webserver.api.hardware.light_engines import brightnessMin ,
<~ brightnessMax

139 from src.webserver.api.hardware.light_ engines import
— lightEnginesLogging

140 from src.webserver.api.hardware.light engines import
— lightEnginesLogMessage

141 from src.webserver.api.hardware.light_ engines import
— lightEnginesImage

142 from src.webserver.api.hardware.light_ engines import
— lightEnginesLED

143 from src.webserver.api.hardware.light_ engines import
— lightEnginesPower

206

www.manharaa.com

144 from src.webserver.api.hardware.light engines import
— lightEnginesRefreshRate

145 from src.webserver.api.hardware.light engines import refreshRateMin
— , refreshRateMax

146 from src.webserver.api.hardware.light engines import
— lightEnginesImageDimensions

147 from src.webserver.api.hardware.light_ engines import
— lightEnginePerformExposure

148

149 api.add namespace(lightEnginesInit)

150 api.add_namespace(lightEnginesReset)

151 api.add_namespace(lightEngineNames)

152 api.add_namespace(lightEnginesBrightness)

153 api.add_namespace(brightnessMin)

154 api.add_namespace(brightnessMax)

155 api.add_namespace(lightEnginesLogging)

156 api.add_namespace(lightEnginesLogMessage)

157 api.add_namespace(lightEnginesImage)

158 api.add_namespace (lightEnginesLED)

159 api.add_namespace(lightEnginesPower)

160 api.add_namespace(lightEnginesRefreshRate)

161 api.add namespace(refreshRateMin)

162 api.add_namespace (refreshRateMax)

163 api.add_namespace(lightEnginePerformExposure)

164 api.add_namespace(lightEnginesImageDimensions)

165

166

167 def initAPI():

168 nn

169 Initializes the API.

170

71 Must be called after the outgoing Queue object has been created.

www.manharaa.com

172 2799

173 from src.webserver.api import api
174
175 apiBlueprint = Blueprint(”api”, __ _name , url_ prefix="/api”)

L76 # initialize the api
177 initAxesAPI(api)

178 initPrintJobAPI(api)

179 initLightEnginesAPI (api)

180 # add api to the blueprint

181 api.init_app (apiBlueprint)

182 # register the api blueprint

183 app.register__blueprint (apiBlueprint)
184

185

186 def setup (messageRouter, serverConfig, configManager):

187 nny
188 Sets up the Flask process as the communication hub of the
— application.
189
190 Parameters:
191 inq (dict): Contains all of the Queues that will be handling
— incoming messages
192 from the various processes. The dicitonary is of
— the format
193 {<process name>: Queue(), etc.}
194 outq (dict): Contains all of the Queues that will be handling
— outgoing messages
195 to the various processes. The dicitonary is of the
— format
196 {<process name>: Queue(), etc.}
197 configManager (ConfigManager): Used for writing values back to

file. This means that the

208

www.manharaa.com

198 object must already have had a configuration file
— loaded.

199 flaskConfig (dict): all of the configuation information for the
— flask web server

200 ne

201 global cm, config, router, tempDir

203 # set global variables

204 router = messageRouter

205 cm = configManager

206 tempDir = cm. getConfig (Configlnterfaces.Router).tempDir ()
207 config = serverConfig

208

209 # initialize the API

210 initAPI()

211

D12

213 def getTempDirectory():

214 nry

215 Gets the location of the temporary directory
216

217 Returns:

218 str - temp directory location

219 nry

220 global tempDir

221 return tempDir

222

223

224 def run():

225 nry

226 Starts the web server and the router.

209

www.manharaa.com

P28 Stops when shutdown() is called.

229 nry

230 global config

231 # start the flask server

232 # add the threaded option because this should always be running in
— threaded mode.

233 config[”"threaded”] = True

234 app.run(**config)

235

236

237 def send2Process(payload):

238 nry

239 Send a message to a process.

240

241 Acts as a wrapper around the message router

242

243 Parameters:

244 payload (dict): message contents. Must match the format

245 that the process is expecting.

246

247 Returns:

248 messageStatus (bool) - did the process execute correctly?

249 output (any) - response to the original sender of the message.

250 Data type will be variable. In cases where the

251 process did not execute correctly , this will

252 contian the error information.

253 nry

254 uuid = router.sendMessage (payload)

255 status = router.waitForResponse (uuid)

256 return processCommandStatus(status)

257

210

www.manharaa.com

259 def processCommandStatus(sts):
260 nry
261 Process a command status message for consumption by another part of
— the program.
262
263 Parameters:
64 sts (CommandStatus) - command status response from another
— process.
265
266 Returns:
D67 messageStatus (bool) - did the process execute correctly?
268 output (any) - response to the original sender of the message.
269 Data type will be variable. In cases where the
70 process did not execute correctly , this will
271 contian the error information.
D72 nry
D73 if not isinstance(sts, CommandStatus):
D74 print (sts)
275 raise Exception (
D76 "Invalid response. Response was not formatted as a
— CommandStatus object.”
77)
P78 print (”status: 7, sts)
279 if sts.state = ErrorState.none:
280 return True, sts.returnVal
281 elif debug:
82 return False, sts.traceback
283 else:
P84 return False, sts.errorMsg

A.12 LightEngineBrightness.py

211

www.manharaa.com

1 from flask_restplus import Resource, fields , Namespace, reqparse

2 from src.webserver import send2Process

3 from src.data_structs.internal messages.hardware import (

4 LightEngineBrightness as Brightness,

5)

6

7lightEnginesBrightness = Namespace (

8 "light__engines/brightness”,

9 description="getting and setting the brightness of the light
<~ engines”

10)

11

12 getModelResponse = lightEnginesBrightness.model(

13 "response to a command to get the brightness of the light engine”,
14 {

15 "brightness”: fields.Float(),

16 "valid”: fields.Boolean(),

17 "errorMsg”: fields.String(),

18 }

19)

20 setModelResponse = lightEnginesBrightness.model(

21 "response to a command to set the brightness of the light engine”,
22 {"valid”: fields.Boolean(), ”errorMsg”: fields.String(),},

23)

24 setModelParams = lightEnginesBrightness.model(

25 "param to set the brightness of the light engine”,

26 {

27 "brightness”: fields.Float(

28 required=True, example=100, description="brightness value”
29)

212

www.manharaa.com

31)

32

33

34 @QlightEnginesBrightness.route(”/<string:lightEngineName>")

35 @lightEnginesBrightness .param(”lightEngineName”, "The name of the light
< engine”)

36 class LightEngineBrightness(Resource):

37 nnn

38 API to get and set the brightness of different light engines.

39 nrr

40

41 @lightEnginesBrightness. marshal with (getModelResponse)

42 def get(self, lightEngineName):

43 7

44 Get brightness value.

45 Must be performed after the light engine power is on

46 7

47 try:

48 valid , response = send2Process(Brightness(lightEngineName))

49 return (

50 {"brightness”: response, ”valid”: valid, ”errorMsg”:

< str(response)},

51 200,

52)

53 except Exception:

54 return 500

55

56 @lightEnginesBrightness.expect (setModelParams)

57 @lightEnginesBrightness.marshal_with (setModelResponse)

58 def post(self, lightEngineName):

59 nn

213

www.manharaa.com

61 Must be performed after the light engine has been initialized
— and the power is on.

62 nry

63 try:

64 parser = reqparse.RequestParser ()

65 parser .add_argument (

66 "brightness”, type=int, help="brightness value to set
— the light engine to”

67)

68 args = parser.parse_args ()

69

70 valid , response = send2Process(

71 Brightness (lightEngineName , set=True, brightness=args|[”
— brightness”])

72)

73 return {”valid”: wvalid, ”errorMsg”: response}, 200

74 except Exception as e:

75 print (str(e))

76 return 500

A.13 ConfigManager.py

1 from jsonschema import Draft7Validator, validate, RefResolver
2 import json

3 import os

4 import copy

5 import enum

6 from threading import Lock

7 from src.data_structs import Configlnterfaces

8 from src.config.controllers import PrintJobConfig

9 from src.config.hardware.axes import AxesInterfaceConfig

214

www.manharaa.com

10 from src.config.hardware.light engines import
— LightEnginesInterfaceConfig
11 from src.config.controllers import RouterConfig, PrintJobConfig
12 import subprocess
13
14
15 class ConfigManager :
16 nr
17 Handles the initial parsing and validation of config files against
— the JSON schema. Also produces
18 interface specific configs.
19
20 Any additional validation should be done inside individual config
— classes
21
22 Attributes:
23 _interfaces (dict) - lookup table for quick access to the
— different interface config classes.
24 config (dict) - all configuration settings , validated through
— jsonschema .
25 nry
26
27 _interfaces = {}
28 _configFileLock = Lock()
29
30 def __init__ (self, configFilePath):
31 nry
32 Loads config file and validates it against the schema.
33
34 Parameters:
35 configFilePath (str) - path to the config file
36 7

215

www.manharaa.com

37 self.configFilePath = configFilePath

38 self.path = os.path.abspath(os.path.dirname(__file__)) + 7/”

39 with open(self.path + ”schema/config_ schema.json”, 7r”) as f:

40 self.schema = json.load(f)

41 with open(configFilePath, "r”) as f:

42 self.config = json.load(f)

43

44 # create resolver to handle jsonschema $ref statements

45 self . resolver = RefResolver (7 file://%s” % self.path + ”schema/”
< , None)

46 validate (self.config, self.schema, resolver=self.resolver)

47

48 self.createConfigs ()

49

50 def createConfigs(self):

51 nnn

52 Creates all of the top level Config objects for the config file
—

53 nen

54 if self.axes() is not None:

55 self. interfaces[Configlnterfaces.Axes] =

— AxesInterfaceConfig(self.config)

56 if self.light engines() is not None:

57 self. interfaces[Configlnterfaces.LightEngines] =
— LightEnginesInterfaceConfig (

58 self.config

59)

60 if self.router() is not None:

61 self. interfaces[Configlnterfaces.Router] = RouterConfig(

— self.config)

62 if self.printJob() is not None:

216

www.manharaa.com

63 self. interfaces[Configlnterfaces.PrintJob]| =
— PrintJobConfig(

64 self.config

65 AxesInterfaceConfig(self.config),

66 LightEnginesInterfaceConfig(self.config),
67)

68

69 def getConfig(self, configlnterface):

70 nnn

71 Gets an interface config.

72

73 Returns:

74 Config/None - interface config or None, depending on if the

— Config was specified

75 nnn

76 if not isinstance(configIlnterface, Configlnterfaces):

7 raise ValueError(

78 ”ConfigManager.createConfig only accepts the
— Configlnterfaces enum data type”

79)

80 return self._interfaces.get(configlnterface)

81

82 def axes(self):

83 return self.config.get(”Axes”)

84

85 def light_engines(self):

86 return self.config.get(”LightEngines”)

87

88 def general(self):

89 return self.config|[”General”|

90

217

www.manharaa.com

92 return self.config.get(”Router”)

93

94 def printJob(self):

95 return self.config.get(”PrintJob”)

96

97 def resolveSchema (self , value):

98 nny

99 Resolves the value of a given JSON schema $ref

100

101 Parameters:

102 value (str) - valid ref string

103

104 Returns:

105 (dict) - python dictionary of the resolved JSON schema

106 nrr

107 path, ref = self.resolver.resolve(value)

108 return ref

109

110 def buildSchema(self , schema):

111 7

112 Recursive function that resolve all schema files into a single

< schema file for

113 the creation of documentation.

114

115 Parameters:

116 schema (dict) - python dictionary of valid JSON schema

117

118 Returns:

119 (dict) - wvalid JSON schema with the JSON schemas at refs
— explicitly added in

120 R

21 output .deepcopy (schema)

218

www.manharaa.com

122 for key, value in schema.items():
123 # print (key)
124 if key = "S$ref”:
125 replacement = self.buildSchema(self.resolveSchema (value
=)
126 del output[key]
127 output.update (replacement)
128 elif isinstance(value, dict):
129 replacement = self.buildSchema (value)
130 output [key] = replacement
131 elif isinstance(value, list):
132 if len(value) > 0:
133 if isinstance(value[0], dict):
134 for index, i in enumerate(value):
135 replacement = self.buildSchema (1)
136 output [key][index] = replacement
137 return output
138
139 def createSingleFileConfig(self):
140 nr
141 Creates a single config file with all of the JSON schema
— references resolved.
142
143 Used for easy creation of documentation of the config file.
144 nnr
145 output = self.buildSchema (self.schema)
146 with open (
147 self.path + ”schema/single_file_config_for_documentation.
— json”, "w”
148) as file:
149 json .dump(output, file , indent=2)

219

www.manharaa.com

151 def generateSchemaDocumentation (self , schemaFilePath ,

— outputFilePath):
152 self.createSingleFileConfig ()
153 genDocsCommand = ”"bootprint json-schema {} {}”.format(
154 schemaFilePath , outputFilePath
155)
156 try:
157 subprocess.run (genDocsCommand, check=True, shell=True)
158 except Exception as e:
159 print (str(e))
160
161 def saveAxisCalibrationPosition (self , axisName, calibratedPosition)

—
162
163 Saves the calibrated position of an axis to the config file.
164
165 Parameters:
166 axisName (string): name of the axis to assign the value to
167 calibratedPosition (float): value to save to the config

— file.
168 ne
169 newConfig = self.getConfig(Configlnterfaces.Axes).
— setCalibrationPosition (

170 axisName, calibratedPosition
171)
172 self .saveToConfigFile (newConfig)
173
174 def saveToConfigFile(self , config):
175 nm
176 Saves a modified config back to the config file
177

220

www.manharaa.com

179 config (dict) - modified config to save to the config file
180 nny

181 with self._ configFileLock:

182 with open(self.configFilePath, "w”) as file:

183 json .dump(config, file , indent=4)

A.14 config_schema.json

14

2 "$schema”: "http://json -schema.org/draft-07/schema#” ,

3 7id”: 7root”,

4 "type”: "object”,

5 "properties”: {

6 "General”: {

7 "$comment”: "properties that apply generally to the system
— software”,

8 "type”: “object”,

9 "properties”: {

10 "name”: {

11 "$comment”: "name of the config file”,

12 "type”: 7string”

13 I

14 "comment”: {

15 "$comment”: ”"for long form explanation of the

— config file”,

16 "type”: 7string”

17 }

18 "debug-all”: {

19 "$comment”: ”"enables global debug printout.

< Overriden by local debug levels”,
20 "type”: ”"boolean”

221

www.manharaa.com

22 1,

23 7additionalProperties”: false ,

24 "required”: |

25 "name” ,

26 "debug-all”

27]

28 }

29 "Axes”: {

30 "$comment”: ”configuration info for the AxesInterface”,
31 "type”: "object”,

32 "properties”: {

33 "comms-debug”: {

34 "$comment”: “debugging for messages being sent

— between the Router and the AxesInterface”,

35 "type”: "boolean”

36 }s

37 "drivers”: {

38 "$comment”: ”config info for each of the drivers

< and axes/shims”,

39 "type”: "array”,
40 "items”: {

41 "$ref”: ”axes/axes driver_ schema.json#/driver”
42 I

43 “uniqueltems”: true
44 }

45 ’

46 7additionalltems”: false,
47 "required”: |

48 "drivers”

49]

222

www.manharaa.com

52

53
54
55
56

o7
o8
59
60
61
62
63

"$comment”: ”configuration info for the
— LightEnginesInterface”,
"type”: "object”,
"properties”: {
"comms-debug”: {
"$comment”: “debugging for messages being sent
— between the Router and the

— LightEnginesInterface”,

"type”: ”boolean”
}
"drivers”: {
"$comment”: ”"config info for each of the drivers”,
"type”: "array”,
"items”: {
"$ref”: ”light engines/

< light_engines_driver_schema.json#/driver”

})

“uniqueltems”: true

})

7additionalltems”: false,
"required”: |

?drivers”

})

"Router”: {
"$comment”: ”config info the router and flask web server”,
77type77: ”ObjeCt”,

"properties”: {

"debug”: {
"$comment”: “debug level for the router”,
"boolean”
223

www.manharaa.com

80 1,

81 "server configuration”: {

82 "$comment”: ”configuration for the flask server”,
83 "type”: "object”,

84 "properties”: {

85 "host”: {

86 "$comment”: “hostname for the flask server.

— Usually some variation of localhost

— or 0.0.0.07,

87 "type”: 7string”,

88 "format”: ”hostname”

89 I

90 "port”: {

91 ?$comment”: "port to serve the flask

— webserver on”,

92 "type”: "integer”,

93 "minimum”: 0,

94 "maximum” : 65535,

95 "default”: 5000

96 H

97 "debug”: {

98 "$comment”: “debug output for the flask

— server”,

99 "type”: ”boolean”
100 }

101 I

102 7additionalltems”: false,
103 "required”: |

104 "host”,

105 "port”

106]

224

www.manharaa.com

})

"additionalltems”: false,
"required”: |

"server configuration”

I

"PrintJob”: {
"$comment”: ”config info for the print job controller”,
"type”: “object”,

"properties”: {

"comms-debug”: {
"type”: ”"boolean”

I

"light engine name”: {
"type”: "string”

I

"build platform axis name”: {
"type”: 7string”

I

"build platform axis top position”: {
"type”: ”number”

I

"build platform axis bottom position”: {
"type”: “number”

}s

"build platform axis swap min/max”: {

"type”: ”boolean”

})

7additionalProperties”: false ,
"required”: |

"light engine name”,

225

www.manharaa.com

140 "build platform axis name”
141 "build platform axis top position”,

142 "build platform axis bottom position”

143 "build platform axis swap min/max”
144]

145 }

146 1,

147 "required”: |

148 "General”

149],

150 "additionalProperties”: false

151 }

A.15 AxesInterfaceConfig.py

1 from src.config import ABC_ Config

2 from src.config.hardware.axes.axesDrivers import (

3 AxisDummyDriverConfig ,

4 TipTiltDriverConfig ,

5)

6

7

8 class AxesInterfaceConfig (ABC_Config) :

9 99

10 Interface for retrieving the configuration information needed to

— configure the AxesInterface class

11 through its run() function.
12
13 Documentation for undocumented functions can be found inside the

— Interface abstract base class.

226

www.manharaa.com

16

17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

_driverTypes = { # driver key names should match the enum defined

_driverTypes (dict) - keeps track of all of the different

— drivers

99999

— for the class property in axes_driver_schema.json
7 AxisDummyDriver”: AxisDummyDriverConfig,

"TipTiltDriver”: TipTiltDriverConfig ,

def __init__ (self, config):

super ().__init__ (config)

self . driverConfigs = []

for driver in self.drivers():
driverName = driver [”name” |
driverClassName = driver[”class”]|
driverConfigClass = self._ driverTypes|[driverClassName | (

driverName, self._config

)

self.driverConfigs.append(driverConfigClass)

def getArguments(self):
return {”debug”: self.debug(), "axisDrivers”: self.

— driverConfigs}

def getConfig(self):

return self. config.get(”Axes”)

def drivers(self):
return self.getConfig().get(”drivers”)

227

www.manharaa.com

45 return self.driverConfigs

46

47 def shims(self):

48 output = []

49 for driver in self.driverConfigs:

50 output += driver.getShims ()

51 return output

52

53 def debug(self):

54 nnn

55 Use global default, unless otherwise specified.

56

57 Returns:

58 bool - set debug mode

59 nnn

60 output = self.globalDebug()

61 localDebug = self.getConfig().get(”comms-debug”)

62 # give priority to local debug over global if defined

63 if localDebug is not None:

64 output = localDebug

65 return output

66

67 def __str_ (self):

68 return str(self.getArguments())

69

70 def setCalibrationPosition (self, axisName, calibratedPosition):

71 nnn

72 Finds the given axis and has it save over the config file with
— the

73 calibration position parameter set.

74

228

www.manharaa.com

76 axixName (str) - name of the axis to save the calibration
— position to

7 calibratedPosition (str) - position to save

78 mn

79 for shim in self.shims():

80 # find the shim

81 if shim.getName() == axisName:

82 return shim.updateCalibratedPosition(calibratedPosition

=)
83 raise ValueError (”Axis {} not found”.format (axisName))

A.16 ABC_ AxesDriverConfig.py

1 import copy
2 from src.config.hardware.axes.axesShims import AxisDummyShimConfig,
— TipTiltAxisShimConfig

3 from src.config import ABC_ Config

4

5

6 class ABC_AxesDriverConfig (ABC_Config) :

7 99

8 Defines basic access functions for an AxisDriver.

9

10 Attributes:

11 _axes (dict) - lookup table for which Configs go with which
— Shims.

12 driver (dict) - reference to the part of the config file that
— contains the

13 config info for this particular driver.

14 shims (list of AxesShimConfig) - list of all of the shim
— configs associated

229

www.manharaa.com

16 nnn

17

18 # what is called an axis in the config file is call a axis shim in
— the code

19 _axes = {7AxisDummyShim”: AxisDummyShimConfig, ”TipTiltShim”:
< TipTiltAxisShimConfig}

20

21 def __init__ (self , name, config):

22 nnn

23 Finds and creates the configuration.

24

25 Parameters:

26 name (str) - name of the driver.

27 config (dict) - dictionary representation of the entire

— JSON config file.

28 nnn

29 # create the config info

30 super () .__init__ (config)

31

32 # find the specific driver

33 self.shims = []

34 drivers = self.getDrivers ()

35 for driver in drivers:

36 if driver[”name”] == name:

37 self.driver = copy.deepcopy(driver)

38 # create all of the axis Configs

39 for axis in driver[”axes”]:

40 axisConfig = self. axes[axis[”class”]](

41 name, axis|[”name”], self._ config

42)

43 self .shims.append(axisConfig)

230

www.manharaa.com

45

46 def getClassName (self):

47 nnn

48 Gets the name of the driver class that this configuration is
— intended for.

49

50 Returns:

51 str - class name

52 nnn

53 return self.driver[”class”]

54

55 def getName(self):

56 nnn

57 Gets the name of the driver that this configuration is intended
— for.

58

59 Returns:

60 str - driver name

61 nnn

62 return self.driver [”name”

63

64 def getDrivers(self):

65 nnn

66 Gets the dictionary objects for all of the drivers

67

68 Returns:

69 (list of dict)

70 nen

71 return self. config[”Axes”][”drivers”]

72

73 def getConfiguration(self):

74 -

231

www.manharaa.com

75 Gets the configuration information for the specific driver

76

7 Returns:

78 dict - config info

79 nnn

80 return self.driver [”configuration”]

81

82 def getAxes(self):

83 nnn

84 Gets all of the axes config info that are associated with this
— driver

85

86 Returns:

87 (list of dict)

88 nnn

89 return self.driver [”axes”

90

91 def getDebug(self):

92 nnn

93 Gets the debug level for the driver. Gives priority to local
— debug definition over global.

94

95 Returns:

96 bool

97 nen

98 if self.driver.get(”debug”) is not None:

99 return self.driver [”debug”]

100 else:

101 return self.globalDebug()

102

103 def getShims(self):

04 -

232

www.manharaa.com

105 Gets all of the shim Config objects
106

107 Returns:

108 (list of AxisShimConfig)

109 nrr

110 return self.shims

A.17 AxisDummyDriverConfig.py

1 from src.config.hardware.axes.axesDrivers import ABC_ AxesDriverConfig
2
3
4 class AxisDummyDriverConfig (ABC__AxesDriverConfig) :
5 99
6 Handles formatting the configuration data for the DummyDriver
7 99
8
9 def getArguments(self):
10 nrn
11 Gets the arguments that the DummyDriver needs to be initialized
12
13 Returns:
14 driverConfigs (dict) - kwargs for DummyDriver. init ()
15 shims (list of AxisShimConfig) - Config objects for the
— shims that are associated
16 with this driver.
17 nnn
18 driverConfigs = {}
19 if self.getConfiguration().get(”acceleration”) is not None:
20 driverConfigs[”acceleration”] = self.getConfiguration().get
< (”acceleration”)
afiguration () .get (”deceleration”) is not None:

233

www.manharaa.com

22 driverConfigs[”deceleration”] = self.getConfiguration().get
< (”deceleration”)

23 if self.getConfiguration().get(”velocity”) is not None:

24 driverConfigs [”velocity”] = self.getConfiguration().get(”
— velocity”)

25 if self.getConfiguration().get(”maxPos”) is not None:

26 driverConfigs ["maxPos”]| = self.getConfiguration ().get(”
— maxPos”)

27 if self.getConfiguration().get(”minPos”) is not None:

28 driverConfigs ["minPos”]| = self.getConfiguration ().get(”

< minPos”)

29 return driverConfigs, self.getShims/()
30

31 def _ str (self):

32 return str(self.driver)

A.18 axes_ driver schema.json

14

2 "$schema”: “http://json -schema.org/schema#”,

3 7id”: 7axes_drivers”,

4 "description”: ”schemas for all of the drivers”,

5 "driver”: {

6 "$comment”: ”config info and options for axis drivers”,

7 "type”: “object”,

8 "properties”: {

9 "name”: {

10 "$comment”: "name that will be used to refer to the
— axis throughout the code”,

11 "type”: 7string”,

12 "pattern”: " [a-zA-Z0-9_]+8”

234

www.manharaa.com

14
15
16
17
18
19
20
21
22
23

24
25
26

27
28
29

30
31
32
33
34

35
36
37
38

"class”: {
"$comment”: ”class to use as the driver”,
77type”: ”String”,
"enum”: [
7 AxisDummyDriver” |

"TipTiltDriver”

})

"configuration”: {
"$comment”: ”variables to configure the driver with.
— Register the file that contains theses parameters
— here.”,
TanyOf”: |
{
"$ref”: 7axes_driver_schemas/axes_dummy_ driver.

< json#/dummy-driver”

"$ref”: 7axes_driver_schemas/tip_tilt_driver.

< json#/driver”

}s
"debug”: {
"$comment”: ”enable/disable printout info for the

— driver. Overrides the global setting.”,

"type”: ”boolean”
I
"axes”: |
"$comment”: "list of the config info for all of the

— axes associated with this driver.”,

” array 7 ,

235

www.manharaa.com

40 "items”: {

41 "$ref”: Yaxes_shim_schema.json#/shim”
42 I

43 "uniqueltems”: true
44 }

45 },

46 "additionalltems”: false ,
47 "required”: |

48 "name” ,

49 "class”,

50 "configuration”,

51 7axes”

52]

53 }

54 }

A.19 axes dummy driver.json

14
2 "$schema”: “http://json -schema.org/schema#”,
3 7id”: ”axes -dummy-driver”
4 "dummy- driver”: {
) "$comment”: "config parameters for the axis dummy driver”,
6 "type”: “object”,
7 "properties”: {
8 "acceleration”: {
9 "$comment”: ”default acceleration value”,
10 "type”: "number”
11 7exclusiveMinimum”: 0
12 b
13 "deceleration”: {
?default deceleration value”,

236

www.manharaa.com

15 "type”: “number”

16 7exclusiveMinimum”: 0

17 I

18 "velocity”: {

19 "$comment”: ”default velocity value”,
20 "type”: "number”

21 7exclusiveMinimum”: 0

22 b

23 "maxPos”: {

24 "$comment”: "maximum valid position”,
25 "type”: “number”

26 7exclusiveMinimum”: 0

27 }

28 "minPos”: {

29 "$comment”: “minimum valid position”,
30 "type”: "number”

31 "minimum”: 0

32 }

33 }

34 "additionalProperties”: false

35 }

36 }

A.20 grbl test.py

1 from src.hardware.axes.drivers import GrblDriver
2 from src.hardware.axes import GrblAxisShim

3 from src.data_structs import MoveMode

4 import time
5
6 79N

237

www.manharaa.com

7 This is a simple test of the GrblDriver and GrblAxis_v0_9 axis

— interface.
8 It should not be used for thorough testing.
9
10 It was originally tested on the HR1 Solus mechanism.
11 77”
12# driver = GrblDriver (numOfAxes=1, verbose=True)
13 driver = GrblDriver (numOfAxes=1)
14 axisZ = GrblAxisShim (driver=driver , grblAxisName="7Z")
15 axisX = GrblAxisShim (driver=driver, grblAxisName="X")
16 axisZ.initialize ()
17 axisZ .home ()

”

18 print (”Current Position: 7, axisZ.getPosition())

19

20 print ("Moving the printer”)

21 axisZ.setPosition (-5.0, MoveMode. absolute)
22 axisX .setPosition (-1.0, MoveMode. absolute)

b

23 print (”Current Position - Z: 7, axisZ.getPosition())

24 print (”Current Position - X: 7, axisX.getPosition())
25

26# print ("Max position: 7, axisZ.getMaxPosition())

27

28# print (” Acceleration: 7, axisZ.getAcceleration ())

20# axisZ.setAcceleration (10.0)
30# print (” Acceleration: 7, axisZ.getAcceleration())
31# axisZ.setAcceleration (100.0)

32# print (" Acceleration: 7, axisZ.getAcceleration ())
33
34# print (” Velocity: 7, axisZ.getVelocity())

35# axisZ.setVelocity (80.0)
36# print (” Velocity: 7, axisZ.getVelocity())

238

www.manharaa.com

38# print (" Velocity: 7, axisZ.getVelocity())
39

40 axisZ .reset_driver ()

41

42 axisX .initialize ()

43 axisX .home ()

A.21 test_ MessageRouter.py

1 import unittest

2 from threading import Thread

3 import time

4 import os

5 from multiprocessing import Queue, Process

6 from src.config import ConfigManager

7 from src.process_interfaces.controllers import MessageRouter

8 from src.data_structs.internal messages import (

9 Shutdown ,

10 CommandStatus,

11)

12 from src.data_structs.internal messages.hardware import AxesNames,
— ABC_ AxisMessage

13 from src.data_structs.internal messages.controllers import
— SaveCalibratedPositionToConfig

14

15

16 class TestMessageRouter (unittest . TestCase):

17 nry

18 Class for testing the MessageRouter controller.

19

20 Imitates two processes talking to each other through the

239

www.manharaa.com

21 799
22
23 dummyPath = (

24 os.path.abspath (os.path.dirname(__ file__))

25 + 7/../../../ config_ files/dummy_config.json”

26)

27 wait = 0.1

28

29 def setUp(self):

30 nn

31 Creates a MessageRouter and the message queues for sending test

— messages to it.

32 nnr

33 self .inq = {}

34 self.outq = {}

35 self.inq [ABC_AxisMessage. destination] = Queue()

36 self.outq [ABC__AxisMessage. destination| = Queue()

37 self.inq[”proc”] = Queue()

38 self.outq[”proc”] = Queue()

39 self .cm = ConfigManager (self .dummyPath)

40 self .router = MessageRouter(self.inq, self.outq)

41 Thread (

42 target=self.router.run, kwargs={"configManager”: self.cm, ”
— debug”: True}

43).start ()

44

45 def tearDown(self):

46 R

47 Shutdown the MessageRouter

48 ny

49 self.router.shutdown ()

50 for ke value in self.outq.items():

240

www.manharaa.com

51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

def

def

payload = value.get(timeout=0.1)

self.assertIsInstance (payload, Shutdown)

test_sendMessage (self):

9999 99

Sends a basic message from one process to the other.

msg = AxesNames ()

send a message to the axes

self.inq[”proc”]. put(msg)

payload = self.outq[ABC_AxisMessage. destination |. get
— self.wait)

check if we received the message from the axes

self.assertIsInstance (payload, AxesNames)

send a CommandStatus back to the proc

self.inq [ABC_AxisMessage. destination |. put(

CommandStatus (payload .uuid, payload.sender)

)

payload = self.outq[”proc”]. get (timeout=self.wait)

check if proc got the message

self.assertIsInstance (payload , CommandStatus)

self.assertEqual (msg.uuid, payload.uuid)

test__messageForRouter (self):

msg = SaveCalibratedPositionToConfig(”Y”, 1.0)

send message to the message router

self.inq [ABC_ AxisMessage. destination |. put (msg)

sleep to give time for the router to do it’s thing
time . sleep (self.wait)

check that none of the other queues have messages
for _, value in self.inq.items():

print ("testing {} queue”.format(_))

(timeout=

www.manharaa.com

82 self.assertEqual(value.gsize (), 0)

83 for _, value in self.outq.items():

84 print ("testing {} queue”.format())

85 self.assertEqual (value.gsize (), 0)

86

87 def test_apiMessage(self):

88 msg = AxesNames ()

89 # use the message router like a regular process interface

90 uuid = self.router.sendMessage (msg)

91 # get the message and send a response back

92 payload = self.outq[ABC_AxisMessage. destination]. get (timeout=

— self.wait)

93 self.inq [ABC_ AxisMessage. destination |. put(

94 CommandStatus (payload .uuid, payload.sender)

95)

96 retval = self.router.waitForResponse (uuid, timeout=self.wait)
97 # make sure the function did not time out

98 self.assertIsNotNone(retval)

99 # check for how bad keys are handled

100 with self.assertRaises (KeyError):

101 retval = self.router.waitForResponse (uuid, timeout=2)

A.22 Publisher.py

1 from threading import Event, Lock, Thread
2 import time

3 from src.data_ structs import PublisherType
4

5

6 def publisher(target):
7 27N

242

www.manharaa.com

8 Determines the publishing behavior of a getter method. (i.e. on
< change or periodic)

9

10 Parameters:

11 target (method) - decorated method

12 nnr

13

14 def deco(function):

15 def inner(self, *args, **kwargs):

16 # get the Publisher object from the class

17 if getattr(self, target) is not None:

18 publisher = getattr(self, target)

19 # validate that the type of the arg is correct

20 if isinstance(args[0], PublisherType):

21 if args[0] == PublisherType.none:

22 return function (self , *args, **kwargs)

23 elif args[0] = PublisherType.onChange:

24 publisher .waitForOnChangeEvent () # wait for a
— change in the variable before calling the
— function

25 output = function (self , *args, **kwargs)

26 return output

27 else:

28 publisher . waitForPeriodicEvent () # wait for
— periodic event to call the function

29 return function(self, *args, **kwargs)

30 else:

31 ValueError (

32 "getter methods decorated with @publisher only
— accept PublisherType values for their
— first arg”

243

www.manharaa.com

34

35 return inner

36

37 return deco

38

39

40 class Publisher:

41 nnY

42 Used in conjunction with an API getter function to turn it into a
— publisher of data.

43

44 When a member wants to subscribe to the publisher, it sends an API
— call to the getter

45 and it is put into a queue by the publisher until the monitored
— data variable is updated

46 or a predefined time as elapsed. At that point in time, the
< publisher will service all of

47 the API requests in the queue and they will return back to the
— caller. Finally , when the

48 API caller receives the request response, it will do what even it
— needs to with that data

49 then immediately send another API request to get another spot in
— the queue.

50

51 This class supports two modes of operation: publish on change, and
— periodic publishing.

52

53 This class contains the queue, event handlers and the logic for
— updating the queue.

54

55 Parameters:

244

www.manharaa.com

56 period (float) - time in seconds for how often to publish
— updates when using periodic publishing

57 onChangeEvent (Event) - event that gets set whenever the
— variable changes

58 onPeriodicEvent (Event) - event that gets on a periodic basis

59 periodicQLength (int) - length of the queue

60 onChangeQLength (int) - length of the queue

61 periodicLock (Lock) - lock for the periodic queue

62 onChangeLock (Lock) - lock for the on change queue

63 n

64

65 def __init__ (self, period):

66 self.period = period

67 self.periodicEvent = Event ()

68 self.onChangeEvent = Event ()

69 self .periodicQLength = 0

70 self.onChangeQLength = 0

71 self.periodicLock = Lock()

72 self.onChangeLock = Lock ()

73

74 # period publishing thread

75 self.periodicPublishThread = Thread(target=self.periodicPublish
=)

76 self.periodicPublishThread .setDaemon (True)

77 self.periodicPublishThread.start ()

78

79 def periodicPublish(self):

80 nen

81 Releases all of the requests from the periodic queue

82 nnn

83 while True:

84 with self.periodicLock:

245

www.manharaa.com

def

def

def

def

only set the event if the queue if full
if self.periodicQLength > 0:
self .periodicEvent.set ()
time.sleep (self.period)

incPeriodicQueue (self):

99999

Puts a request in the periodic queue

2799

with self.periodicLock:
self.periodicQLength += 1

decPeriodicQueue (self):

999999

Removes a request in the periodic queue

with self.periodicLock:
self.periodicQLength -= 1
clear the event if last member of the queue
if self.periodicQLength = 0:

self .periodicEvent.clear ()

incOnChangeQueue (self):

9999 99

Puts a request in the on change queue

277N

with self.onChangeLock:
self .onChangeQLength += 1

decOnChangeQueue(self):

9999 99

in the on change queue

246

www.manharaa.com

117 nnn

118 with self.onChangeLock:

119 self .onChangeQLength -= 1

120 # clear the event if last member of the queue
121 if self.onChangeQLength = 0:
122 self.onChangeEvent. clear ()
123

124 def setChangePublish(self):

125 nnn

126 Sets the change event.

127 R

128 with self.onChangelLock:

129 # only set event if the queue is full
130 if self.onChangeQLength > 0:
131 self .onChangeEvent . set ()
132

133 def waitForPeriodicEvent(self):

134 ney

135 Waits for a periodic event

136 ney

137 self.incPeriodicQueue ()

138 self.periodicEvent . wait ()

139 self.decPeriodicQueue ()

140

141 def waitForOnChangeEvent(self):

142 nnn

143 Waits for a on change event

144 nnn

145 self .incOnChangeQueue ()

146 self.onChangeEvent. wait ()

147 self .decOnChangeQueue ()

247

www.manharaa.com

	Modular 3D Printer System Software For Research Environments
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	Chapter 2 Background
	2.1 How SLA 3D Printing Works
	2.1.1 Resin and light
	2.1.2 Focus Calibration
	2.1.3 Electronics

	2.2 Previous Attempts at System Software
	2.2.1 Desktop Application
	2.2.2 Web Application
	2.2.3 Summary of Lessons Learned

	Chapter 3 Simplified Architecture Description
	3.1 Tools
	3.1.1 Coding Languages
	3.1.2 Operating Systems
	3.1.3 Web Server
	3.1.4 Configuration and Print Settings Files
	3.1.5 Frontend Framework
	3.1.6 Unit Testing

	3.2 Simplified Architecture Description
	3.2.1 Web Server
	3.2.2 Frontend
	3.2.3 System Software Core
	3.2.4 Backend
	3.2.5 Putting it all together

	Chapter 4 Detailed Architecture Description
	4.1 Starting and stopping the backend
	4.2 Structure of the message router process
	4.2.1 Handling web server messages
	4.2.2 Forwarding messages

	4.3 Print job process
	4.4 Hardware processes
	4.5 File system usage
	4.6 Summary

	Chapter 5 The Structure of the Code Base
	5.1 main.py
	5.2 Messages
	5.3 Process Interfaces
	5.3.1 Light Engines
	5.3.2 Axes
	5.3.3 Print job controller and print job file validator

	5.4 Web server
	5.5 Configuration Management System
	5.6 Tests
	5.6.1 Driver tests
	5.6.2 Processes
	5.6.3 API

	5.7 Final thoughts

	Chapter 6 Development Patterns
	6.1 Adding hardware
	6.1.1 Pattern 1: creating a driver for an existing interface
	6.1.2 Pattern 2: creating a new hardware interface
	6.1.3 Pattern 3: adding new controller interfaces

	6.2 Summary

	Chapter 7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Research
	7.2.1 Integration into production research 3D printer
	7.2.2 Replace Flask's development web server with a dedicated web server
	7.2.3 API handler refactor
	7.2.4 Logging
	7.2.5 File browser
	7.2.6 Impact assessment and prospects

	References
	Appendix A Appendix
	A.1 main.py
	A.2 ABC_Message.py
	A.3 light_engine_message.py
	A.4 system_messages.py
	A.5 LightEnginesInterface.py
	A.6 ABC_LightEngineDriver.py
	A.7 LightEngineDummyDriver.py
	A.8 AxisDummyDriver.py
	A.9 AxesInterface.py
	A.10 PrintJobController.py
	A.11 server.py
	A.12 LightEngineBrightness.py
	A.13 ConfigManager.py
	A.14 config_schema.json
	A.15 AxesInterfaceConfig.py
	A.16 ABC_AxesDriverConfig.py
	A.17 AxisDummyDriverConfig.py
	A.18 axes_driver_schema.json
	A.19 axes_dummy_driver.json
	A.20 grbl_test.py
	A.21 test_MessageRouter.py
	A.22 Publisher.py

